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The superalgebra eigenstates (SAES) concept is introduced and then applied to find
SAES associated to the sh(2/2) superalgebra, also known as Heisenberg—Weyl Lie su-
peralgebra. This implies to solve a Grassmannian eigenvalue superequation. Thus, the
sh(2/2) SAES contain the class of supercoherent states associated to the supersym-
metric harmonic oscillator and also a class of supersqueezed states associated to the
osp(2/2p sh(2/2) superalgebra, where osp(2/2) denotes the orthosymplectic Lie su-
peralgebra generated by the set of operators formed from the quadratic products of the
Heisenberg—Weyl Lie superalgebra generators. The properties of these states are inves-
tigated and compared with those of the states obtained by applying the group-theoretical
technics. Moreover, new classes of generalized supercoherent and supersqueezed states
are also obtained. As an application, the super-Hermitiamgrstudo-super-Hermitian
Hamiltonians without a defined Grassmann parity and isospectral to the harmonic
oscillator are constructed. Their eigenstates and associated supercoherent states are
calculated.

KEY WORDS: superalgebra eigenstates; supercoherent; supersqueezed; Grassmann
variables.

1. INTRODUCTION

The algebra eigenstates (AES) associated to a real Lie algebra have been
defined as the set of eigenstates of an arbitrary complex linear combination of the
generators of the considered algebra (Brif, 1996, 1997). According to the partic-
ular realization of the Lie algebra generators, the determination of AES implies,
for instance, to solve an ordinary or a partial differential equation, to apply the
operator technics, etc. For example, in the case of the su(2) Lie algebra, different
approaches have been used such as the constellation formalism (Bacry, 1978),
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the ordinary first-order differential equations (Brif, 1997) or the operator method
(Alvarez-Moraga, 2000). The same methods have also been applied to find AES
for the su(1, 1) Lie algebra (Alvarez-Moraga, 2000; Brif, 1997). In the case of the
two-photon AES, associated to the su(1Ip1)(2) Lie algebra, uses have been done

of ordinary second-order differential equation (Brif, 1996). More recently, AES
associated to thie(2) & su(2) Lie algebra have been obtained using these types of
methods (Alvarez-Moraga and Hussin, 2002). In particular (Brif, 1997) it has been
demonstrated that the generalized coherent states (GCS) associated to the SU(2)
and SU(1, 1) Lie groups, based on group-theoretical approach (Perelomov, 1986),
are subsets of the sets of AES associated to their corresponding Lie algebras.
Moreover, the super coherent states of the supersymmetric harmonic oscillator
(Cooper and Freed-Man, 1983; Salam and Strathdee, 1975; Salomonson and Van
Holten, 1982; Wess and Zumino, 1971) as defined by Aragone and Zypman (1986)
and a new class of supercoherent and supersqueezed states regarded as minimum
uncertainty states have been obtained (Alvarez-Moraga and Hussin, 2002). Gener-
alized supercoherent states (GSCS) associated to Lie supergroups have also been
calculated following a generalized group-theoretical approach. This is the case,
for example, of the supercoherent states associated to the following supergroups:
Heisenberg—Weyl (H-W) and OSp(1/2) (Fatygal, 1991)U (1/2) (Hussin and

Nieto, 1993; Sarkar, 19910l (1/1) (Pelezzola and Topi, 1992), and OSp(2/2) (El
Gradechi and Nieto, 1996).

In the view of these approaches we ask the question of how we can gen-
eralize the AES concept valid for Lie algebras to Lie superalgebras. In general,
as the even subspace of a Lie superalgebra is an ordinary Lie algebra, it is clear
that the new concept must generalize in an appropriate form the AES concept.
Indeed, the set of superalgebra eigenstates (SAES) associated to linear combina-
tions of even generators of the Lie superalgebra must contain the AES associated
to the Lie algebra generated by these generators. Moreover, we expect that the
SAES associated to a certain class of superalgebras contain the GSCS of the re-
lated Lie supergroups. Another criterion to define the SAES concept starts from
the utility that we can give to this concept when we study a particular quantum
system, more precisely when we want to know the eigenstates of a physical observ-
able represented by a super-Hermitian operator formed by a linear combination
of the superalgebra generators or by a suitable product of these generators. Ac-
cording with these requirements, we propose the following definition of the SAES
concept.

Definition 1.1. SAES associated to a Lie superalgebra correspond to the set of
eigenstates of an arbitrary linear combination, with coefficients in the Grassmann
algebraCBy_, of the superalgebra generators. This means tifasis superalgebra
generated by the set of even operatb(a,), ®(ay), ... ®(amn) and the set of odd
operatorsb(ams1), ®(8m+2), - . ., P@msn), SAES associated 16 are determined
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by the eigenvalue equation
m+n .
[Z B'@(a-)} ¥y = Zly), (1)
i=1

whereB' € CB.,Vi =1,2,...,m+n,andZ € CB,.

In general, the superstat¢) is a linear combination, with coefficients in
CBy, of the basis vectors of a graded super-Hilbert spatahe representation
space of the superalgebra on which it acts.

Let us here mention that Appendix A contains the notations and conventions
used in the context of Grassmann algebras, Lie superalgebras, and supergroups.
This will help for a good understanding of this work.

From the preceding definition, we see that to know explicitly SAES associated
to a given Lie superalgebra, we must analyze case by case the different possible
solutions of the Grassmannian eigenvalue equation (1), taking into account both
the domain of definition of the Grassmann coefficients and the parity of them. In
general, the calculations can be long and fastidious, but in physical applications,
some simplifications appear because of some constraints on the coefficients like
assuming a certain type of parity.

A natural generalization of the concept of AES to SAES starts with H-W
superalgebra sh(2/2) generated by the bosonic operatars and | and the
fermionic onesb and bf. We expect to recover the usual algebra eigenstates
(Alvarez-Moraga and Hussin, 2002; Aragone and Zypman, 1986; Orszag and
Salamo, 1988) but also supercoherent and supersqueezed states based on a group-
theoretical approach (Kostelgckt al., 1993; Nieto, 1992).

Let us remind that the well-known bosonic algebra is generated by the even
operatorsa, af, andl, which satisfy the usual nonzero commutation relation

[a,al] =1, (2)
and act on the usual Fock spagg= {|n), n € N}, as follows:
an)=+vnn-1), a'ln=+v/n+1n+1), neN. (3)

The operators, a' are the usual annihilation and creation operators of the har-
monic oscillator, and acts as the identity operator. The corresponding fermionic
superalgebra is generated by the odd operatdssand the even operatbrwhich
satisfy the nonzero supercommutation relation

{b,b'} = 1. (4)
These operators act on the graded spege= {|+), |—)} as follows:
bl+) =|-), bl-)=0, bf|+)=0, bf|-)=|+). (5)

Taking the all sefa, a', I, b, bf} satisfying the nonzero supercommutation rela-
tions (2) and (4), we get the H-W superalgebra sh(2/2). Its acts naturally on the
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graded Fock spack, ® F; = {|n, &), n € N}. To compute SAES of this superal-
gebra, we will consider linear combinations over the field of Grassmann numbers.
This means that, in general, we will deal with linear combinations of the bosonic
(even) and fermionic (odd) operators with the coefficients taking values in the set
CB..

The paper will be thus distributed as follows. In section 2, we will determine
SAES associated to the bosonic H-W Lie algebra. A significant difference with
respect to the other approaches is now that linear combinations of generators is
considered over the field of Grassmann numbers. Connections with preceding
approaches will be made. In section 3, fermionic H-W Lie superalgebra will
be considered. These special SAES cases will give a good understanding of the
specificities induced by working with Grassmann-valued variables and will help us
to give a complete description of SAES associated to the H-W Lie superalgebra in
section 4. Finally, in section 5, Hamiltonians which are isospectral to the harmonic
oscillator one will be constructed and their associated supercoherent states will
be described. The notations and conventions used in this work will be revised in
Appendix A, whereas the details of calculus of SAES of section 4 will be presented
in Appendix B.

2. SAES ASSOCIATED TO THE HEISENBERG-WEYL LIE
ALGEBRA, GENERALIZED SUPERCOHERENT,
AND SUPERSQUEEZED STATES

SAES associated to the H-W Lie algebra will be obtained as the s$tates
that verify the eigenvalue equation,

[A_a+ Aial + Aslly) = Z[y), (6)

whereA., Az, andZ € CB_. From the structure of this equation, we expect to
recover the usual results concerning, in particular, the eigenstates.ef, the
standard coherent states of the harmonic oscillator (Perelomov, 1986). That is
the reason why we begin our considerations by taking fisse= Az = 0. In this
context, we will distinguish between the cases whéxe)f, is zero and not zero.
Next, the general combination (6) will be considered with ), # 0. This means

that A_ is an invertible Grassmann number and the relation (6) thus reduces to

[a+Baly) =zy), B,zeCB. @)

2.1. Generalized Coherent States

If we take A, = Az = 0, the eigenvalue Equation (6) thus writes

Aaly) = ZIy). ®)
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Let us assume a solution of the type
[o.¢]
¥) =) Caln), CneCBL. ©)
=0

By inserting (9) into (8), applying (3) and using the orthogonality property of states
{In)}22,, we get to the following recurrence relation:

ZGCy
Jn+1'
Here we must consider two cases: the cagegf # 0 and (A_), = 0.

In the first case,A_), # 0 is thus an invertible quantity and we can isolate
the coefficienC,,, 1 in (10). It is easy to show that we get

A Cn+1 =

n=0,1,.... (10)

A )iz
cnzuco, n=1,2,.... (11)
/!
SAES associated to the operatura with eigenvalueZ are then given by
9= 2cam =y 2 cy0 - et cyp) (12)
n=0 \/_ n=0 !

wherez = (A_)"1Z. As we are interested in normalized eigenstates, we take
(Co)y # 0 and the eigenstates can be written as

= D(20)D(21)[0), (13)
where
D(z0) = expzoa’ — Z5a), D(z1) = exp @a’ — za), (14)

2o = ((A-)*Z)oandzy = ((A-) 2.

We notice that the generalized coherent states associated to the harmonic
oscillator system, considered as eigenstates of the annihilation operaterere
given by (13) wherA_ = ¢,, i.e., whenzg = Zg andz, = Z;. These states are
obtained by applying successively the superunitary oper@tgts) andD(Z,) to
the fundamental stat@).

In the second case, i.e., whef_(), = 0, we cannot obtain a simple closed
expression to describe all the algebra eigenstates. A class of solution is

cye GO o (15)

NG

together with
A_Ci=2C (16)
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andCy is an arbitrary coefficient such thaZ{), # 0. The condition (16) implies
thatZ, = 0 and is equivalent to the following system of superequations:

(A-)o(C1)o + (A-)1(C1)1 = Zo(Co)o + Z1(Co)1, (17)
(A-)o(C1)1 + (A-)1(C1)o = Zo(Co)1 + Z1(Co)o, (18)

where we have decomposéd, Cy, C; andZ into their even and odd parts. This
system can be solved to gi@ in terms ofCy. A set of normalized eigenstates cor-
responding to the eigenvalie= o A_, « € C, is given by the standard coherent
states

laey) = exp egal — ae,ya)|0) = D(arey)|0). (19)

So, inthe special case whefi()o = 0, the algebra eigenstates of the odd operator
(A_);a contain the set of coherent states of the standard harmonic oscillator.

2.1.1. Density of Algebra

It is interesting to mention that we can interpret this last result in terms of the
concept of density of algebra. Indeed, let us define the odd operators

A_ = zia, A, = —2za, 73 € CB,. (20)

By integrating these operators with respect to the corresponding odd variable, we
get

azfA_dﬁ, aT=/dz1A\+, (21)

i.e., A_ and A, fulfill the role of a linear density of the annihilaticen and the
creationa’, respectively. We notice that

[a,aT]=/{A,,A+}dzIdzl, {a,aﬁ:/[A,,Mdz}dzl, (22)

i.e., the commutator and anticommutator of the even operatarsla’ are ob-
tained by integrating, on the entire odd Grassmann space, the anticommutator
and commutator of the odd operatdts andA ., respectively. This suggests the
following definitions of the densiy of identitiyand of an energy type density:.

w
I={A_, A }=2z7, H=[A A]= Ezlzi;{a, af}. (23)

As we know, the eigenstates of the annihilation operator corresponding to
the complex eigenvalue are given by the standard harmonic oscillator coherent
stateda) = D(«)|0). They verify the eigenvalue equation

ala) = o|a). (24)
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Multiplying both sides of this equation mi and then integrating with respect to
this Grassmann variable and finally using (21), we get

fA_|a>dz} = /azﬂa)dzi, (25)

i.e., by comparing both sides of this last equation, we conclude that a class of
eigenstates of the odd operator corresponding to thezi eigenvalue are given
by the standard harmonic oscillator coherent stej@s).

2.2. Generalized Supersqueezed States

Let us now solve the eigenvalue Equation (7). A class of solutions can be
constructed firstly, by expressing) in terms of a generalized su(1, 1) squeeze
operator (the normalizer of the H-W algebra), following this way the construction
of the standard squeezed states associated to the simple harmonic oscillator system
(Orszag and Salamo, 1988). Indeed, let us write

[¥) = S(X0)l¢e), (26)
where the squeeze operaf{ftp) is given by

2 2
s = e (465 - 435 ). @)

with X an even invertible Grassmann numb@j, its adjoint (see Appendix A).
Inserting (26) into (7), using the relation

SH(X)aS(Xo) = cosh(Xol)a + vAo(y/ ) *sinh(lXolal,  (28)

where|| Xp|| =/ XOX(f and choosingly in such a way that it satisfies

o/ 25) " sinh() ol + o cosh()Xol) = O, (29)
we get the following eigenvalue equation fgn:
[G(Xo, B)a+ Brcosh(Xol)a'lp) = zle), (30)
where
G(Xo, B) = cosh(Xoll) + By X3 (v Xo) " sinh( Xoll). (31)

Let us notice that this last coefficient can be written on the form

G(Xo, B) = G(Xo, Bo) (€5 + B1(G(Xo, Bo)) "/ g (/X)L sinh(| X))
(32)
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where, taking into account (29),

G(Xo, Bo) = [€p — BEXS (Xo) ] cosh( Xol). (33)

Multiplying both sides of Eq. (30) by the inverse 6{xp, 8) and taking into
account (32), we get

[a+ Arallle) = 2le), (34
where
B1 = B1(G(Xo, Bo)) ! cosh( Xol) € CB,, (35)
and
2= [(G(Xo, Bo)) ! — B1y (A)(v/Xo) " sinh(l Xol)]z (36)
Equation (34) is thus simpler to solve than (7). Indeed, we can again try a solution
of the type
lp) = Caln),  CneCBL. (37)
n=0

Inserting it into (34), using the raising and lowering properties of the operators
anda, and the orthogonality conditions of the statgs }, we get the recurrence
relation

[2Cn - \/ﬁBlCn—l]

Chi1= NS , n=2,..., (38)
with
C1=12G, (39)

andCy is an arbitrary constant. Proceeding by iteration, we get

1 n-2 R
Co=— (2" =) (k+1)2"2W(@)B | Co, Nn=2,3,.... 40
"= ( k;( ) (Z')B1 ) Co (40)
This expression may be written in a closed form. Indeed, as we can show that
n-2
-1 —-1)(n—-2
Y (k+ D20y = M Dggoe MO DO 005 4
s 2! 3!
19?2 . 10° . ..s
= (20)" (20)" 21, (42)

2092 31023
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the relation (40) becomes

1 (an 132 n n s

(43)

which is also valid fon = 1. Finally, inserting this resultinto (37), and after some
manipulations, we obtain a general solution of (34), which is

. ~ (ah)? .~ (a3 . ..
o = [ - B G" +2h | @0 (a4)
A normalized version of (44) is given by
(a T)2 @7 s s Ars A
0 =exp| -G - 2h O |peaence by, @

where the operatdd has been defined in (14). The normalization constaig
given by

62 ) = (V) [+ (VD) Ry ] (46)
with
R B = 6 — 5@ VPt (B2 — 2@ b+ B)'@)'P) (@D
and
a2 f) = | G@P0E + @) 7)
+((@V1z+ @0+ (2N 2)' P + (21)'2)
- J@FE a4 2)| Gy
— }((21)323 + 92’2 + 2422+ 6)(21) 21(B1) B

— (%)% + (B (20))(21) 21

From (26) and (45) we conclude that a class of hormalized solutions of the
eigenvalue equation (7), corresponding to the eigenvaligegiven by the gener-
alized supersqueezed states

_(af)2 ah)?
= () eXp[_ﬂl (a2) - 21,31( 3)

Let us now give some examples of such states.

}D(ZO)D(Zl)lo C(z pBy).  (48)
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2.2.1. Standard Supersqueezed States

The standard supersqueezed states are obtained from (48)pwke and
71 =0, i.e., wheng; =0, 2; = 0, andzy = (G(Xo, Bo)) 0. They are given by

[¥) = S(X0)D(20)]0), (49)

whereX,; andZ, remain even Grassmann-valued numbers.

2.2.2. A New Class of Supersqueezed States

Another class of supersqueezed states appears in (48), because of the possi-
bility to choose in (7) a nonzero odd component of the varighleor example, if
we choosey = 0, i.e.,Xp = 0, B1 = B1, andz = z, then from (48) we obtain the
following class of states:

2 3
¥ = exp[—m% — 2B (ag)

They are obtained by applying the operator

2 3
e zlﬁl%} (51)

] D(20)D(21)10)C (2, B1). (50)

o

to the generalized coherent states (133.0fh the special case wherg = 0, we
get to the normalized supersqueezed states

1 1
v) = |:e¢ + 7P 1(Z(@)° + 4207 + 2)} eXp[—éﬂfﬁl(az(a*)Z + (a*)zaz)]

2 2
<o) (% - 515 ) | Do, 52

which are written in terms of the superunitary oper&@6+ 81) as defined in (27).
Moreover, in the case whefz € RB,,, this last equation becomes

[¥) = S(—B1)D(20)[0), (53)

i.e., we are in the presence of a class of supersqueezed states which are constructed
by applying the superunitary supersqueeze opelgtos;) to the standard har-
monic oscillator coherent states.

3. SAES ASSOCIATED TO THE FERMIONIC SUPERALGEBRA

In this section, we will construct SAES associated with the fermionic su-
peralgebra generated Ilg, bf, 1} which satisfy the nonzero supercommutation
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relation (4). The general eigenvalue equation writes as
[B_b+ B,bl + Bsl]|y) = Z|y), B, ZeCBy. (54)

Here we will distinguish again two cases: firstly whgn = B3 = 0 and secondly
whenB_ is invertible so that Eq. (54) reduces to

(b+sbN|y) =zly), 8,z<CBy. (55)

3.1. Theb-Fermionic Eigenstates
Let us solve
Bbly) = Z|y), B,Z € CB,. (56)

Since the fermionic graded Fock space is reduced to the veetpr@ven) and
|+) (odd) which act as in (5), a solution of (56) writes as

¥y =Cl|-)+D|+), C,DeCB. (57)
Inserting (57) into (56) and using (5), we get
BD*|—) = ZC|—) + ZDI|+). (58)

The orthogonality of the stat¢s) and|+) leads to the following set of algebraic
equations:

BD*=ZC, ZD=0, (59)
or by conjugation of the first one,
B*D = Z*C*, ZD=0. (60)

Let us mention that, wheB; = 0, we have evidently the normalized solution
|v) = |—)whenthe eigenvalugis zero, but because of the presence of Grassmann
value quantities, wheB, = 0, we have a larger set of solutions. For instance, for
B = By, we find a solution of the form

[¥) = C|—=) £ Ba|+). (61)
Normalized eigenstates are given by
%) = expl=(Bib! + B{b)]|-). (62)

When Z # 0, nontrivial solutions appear if and only &, = 0. From (60),
we haveD, = 0. To solve completely the system (60), we have to distinguish two
cases.

If B, # 0, we can solvéd from the first equation of (60)

D = (B*)"!z*C* = (B~'Z)*C* = z*C*, (63)
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wherez = 7o + z; = (B~1Z). Now inserting (63) into the second equation of
(60), we get

Z7'C* =0. (64)
Normalized solutions will be obtained@, # 0 and we thus get
Z7Z" =0, (65)
which can be written explicitly
=0, 20Zy=2z2Z. (66)

The normalized eigenstates Bb with the eigenvalu& satisfying (66) are
given by

lv) =1-)+Z°|+))C, (67)

whereC is an arbitrary Grassmann number such ©at 0. They can be written
as

|120; 21) = T(z2)T(20)|-), (68)
where the superunitary operat@tsare given by
T(z1) = explzs — z}b), T(z0) = explzob’ — Z5b). (69)

Theb-SAES are obtained from (68) whé&h= ¢,4, sothaty = Zgandz; = Z;. We
notice that whemy = 0, they reduce to the standard supercoherent states associated
to the system characterized by the fermionic Hamiltoriaa: bfb — %

If B, = 0, the problem is a little more tricky. We can write (59) explicitly as

Bodo — B10h = ZoCo + Z1C1, (70)
B1do — Bod1 = Z1Co + ZoCy, (71)
Zodo + Z10y = 0, (72)
Z.do + Zoth = 0, (73)

where we have take@ = ¢y + ¢; and D = dy + d;. In this way, for instance,
whenBy # 0 and Bp)? # 0, we can combine (70) and (71) to obtain

(Bo)’do = (BoZo — B1Z1)Co + (BoZ1 — B1Zo)cy, (74)
(Bo)’ch = (B1Zo — BoZ1)Co + (B1Z1 — BoZo)cy, (75)

and then combine this last system of equations with (72) and (73) to get
Z0(2B1Z1 — BoZo)Co + Ba(Zo)’c1 = O, (76)

Zo(2B1Z; — BoZo)C1 + By(Zo)’co = O. (77)
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The systems (74 and 75) and (76 and 77) are equivalent to
(Bo)’D = BZ*C* (78)
and
Zo(2B1Z1 — ByoZo + B1Zo)C =0, (79)

respectively. As we search for normalized solutions, we must@kg 0. This
implies the following condition for th& eigenvalue:

Zo(2B1Z1 — BoZp) = 0, (80)
B1(Zo)? = 0. (81)

Then, the normalized eigenstates of (56) corresponding t2 #sigenvalue satis-
fying (80 and 81) are given by (57), with an arbitary Grassmann number such
thatC, # 0, andD verifying (78).

Following a similar procedure, wheBy = 0 and B; # 0, the normalized
solutions of (56) corresponding to tiZeeigenvalue satisfying the conditions:

(Z0)* =0,  ZpZ1=0, (82)
are given by (57), witlC, # 0, andD verifying
B:D = —-Z*C". (83)

WhenBy # 0 andB; = 0, the solutions corresponding to tHeeigenvalue satis-
fying the conditions

(Zo)* =0, (84)
are given by (57), witlC, # 0, andD verifying
BoD = Z*C*. (85)

Other classes of solutions can be reached by imposing other conditions on the
coefficientB.

3.2. Supersqueezed States

Let us now solve the eigenvalue (55). If we assume again a solution of the
type (57), then by inserting it into (55), using the raising and lowering properties
(5) and the orthogonality between the sate$ and |+), we get the following
algebraic Grassmann equations for determit@ngnd D:

5C* = zD. (87)
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By conjugating Eq. (86) and then by inserting it into (87), we get
(zz - 8)C* =0. (88)

As we are interested in normalized solutions, we must @Gke- 0, and then (88)
implies

z =3, (89)

i.e.,8 is an even Grassmann number. Inserting (86) into (57) and considering the
conditions (89), we conclude that a set of normalized eigenstates of the operator
(b + 8ob") corresponding to the eigenvalae= +./5¢ + z; is given by

160, 1)* = (I-) — (z1 F v/30)|+))C. (90)

It is not too hard to show that the corresponding normalized supersqueezed states
are given by

180, z1)* = exp(bfz; — z]b) explEy/8o(b" + Z1)]1—) N*(S0, z2), (91)
where the normalization constaNtt is given by
1
N*(80, z1) = F [e¢ F 5 F ooz + (Voo) 2 F Ja’o(/%)izizl)fl} ,
(92)

F(80) = v/ 1+ v/3o(y/80)". (93)

We notice that in the limits; — O the supersqueezed states (91) become the
eigenstates of the operatocorresponding to the eigenvalae= z;.

with

4. SAES ASSOCIATED TO THE HEISENBERG-WEYL
LIE SUPERALGEBRA

Let us now compute SAES associated to the H-W Lie superalgebra gener-
ated by the set of generatojs, af, I, b, b} whose nonzero super-commutation
relations are given by the relations (2) and (4). The eigenvalue equation is written
as

[A_a+ Ajal + Agl + B_b+ B, b|y) = Z|y), As, Ag, B, Z € CBL. (94)

Here we concentrate in the case wherfe ), # 0, i.e., A_ is an invertible
Grassmann number. In this case, we can express (94) in the form

[a+ pal +yb+sbi|y) = zly), B,v,8,ze CBL. (95)



sh(2/2) SAES and Generalized Supercoherent and Supersqueezed States 193

Special cases of this problem have been considered in sections 2 and 3. Here
we consider the cases where we have the presence of both bosonic and fermionic
operators in the eigenvalue Eq. (95).

4.1. Generalized Supercoherent States

First, we take the particular eigenvalue equation
[a+yblly) =2zl¥), r,zeCB.. (96)

Let us assume a solution of the type
¥) =Y (Caln; =) + Dn|n; +)), (97)
n=0

whereC,,, D, € CB,. By inserting (97) in (96), using the lowering properties of
operatorsa andb, Egs. (3) and (5), and the orthogonality properties of the graded
Fock space basign; —), |[n; +), n € N}, we get the recurrence relations

vn+1Chi1 + yD} =2zCn (98)
VN4 1Dpy1 = zDy. (99)

From (99), it is easy to find the expression of the coefficidhtdn terms of an
arbitrary constanDg:

Zn
NG Do,

Then, by inserting (100) in (98), we get the following recurrence relation for the
coefficientsCy:

Dy = n=1,2,.... (100)

1 ()"
Chi1 = N [zCﬂ oV DO} n=0,1,2.... (101)

Finally, proceeding by iteration we get

n-1
Ch = % [z“c:0 - (Z z<”1k>y(z*)k> DS} ., n=1,2..., (102

k=0

whereCy is an arbitrary constant. Sici® andDg are arbitrary constants, Eq. (97)
gives two independent solutions. The first one consists of the standard coherent
states

o0
|z—=2
=0

(103)
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To find the second one, we use the formula
1 n
> Ay (2 = (rozh + 2). (104)
n+1 =

We thus get the generalized coherent states on the form
Vo + Zn)/l N
2 yiH) = 12 v0 v+ [Z a*z ZO (25 + 2'71) '—)] Ds

= exp[-(yo(1 + z1a") + )/1)a*b]eza 0;+)Dg.  (105)
The normalized version of the states (103) is given by
1z, =) = |20, z1; —) = D(20)D(21)0; —). (106)

It is similar to the one obtained in (13). A set of normalized generalized superco-
herent states, orthogonal to (106), is given by the formula

1z, Y0, v1, +) — |1z, =) (—; 2I1Z, Y0, y1, +)
11z o, y1. +) — 1z, =) (= 21Z, Yo, y1, )l
(107)

After some claculations, we get the set of generalized supercoherent states

12, y,+) =120, Z1, Yo, Y1, +) =

|201 7, Y0, Vl, +> = ]D)(ZO)D(Zl){ |O! +>
—~ [ (1 — %zh) D(—z1)(@" + Z5)y0e?® + (1 + Ziz)aty

i
- - dzEnes oo NG e ), 08)
where the normalization constaNtis given by

N(2o, z1, v0, 1) = B 1= B (i — vin(@z)’)zizB7Y],  (109)
with

B(yo, y1) = v1+y? =\/1+y§yo+7/§y1+7/fyo+yfn. (110)

4.1.1. Supercoherent States

The supercoherent states (108) constitute a generalization of the supercoher-
ent states found by Aragone and Zypman (1986). Indeed, from Egs. (108-110) we
see that, in the case where= 0 andz; = 0, we have

120, 0,70, 0;+) = (/1 + ¥ v0) " D(20)(10;+) — &' [0;-)). (111)
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4.1.2. Other Classes of Supercoherent States

Now if in (108-110), we takey = 0 andzy = 0, we get

1
10,21, 0,1, +) = (1 - Eyliyl - VfVlZi21> D(z1)

x (10;4) — (1 + Zz1)al y4|0; -). (112)
We can also distinguish the case where= 0 andz, = 0. We get

10,21, 70, 0;+) = (y/1+ ¢ v0) " D(z1)

;
{I0;+> + 70 [(% - 1) D(—z)al + z{:| |0; —)} . (113)

4.1.3. Standard Supercoherent States
In the case wherg = 0, (108) becomes the standard coherent states
1z, +) = |20, z2; +) = D(20)D(z1)10; +). (114)

By combining the two independent solutions (106) and (114), we can construct a
solution of the type

1Z,p, T) = plz, =) + T|Z,+), (115)

wherep andr are Grassmann numbers such thah, = 71z, = 0. Thus the states
(115) are eigenstates afcorresponding to the eigenvalaeln particular, if we
take, for examplep = 1 — 21—221 andr = —z;, then we obtain the supercoherent
states

|2) = D(20)D(z1)T(22)[0; —). (116)
3
Moreover, if we takez; = 0,p =1 — 91—201 andt = —#6,;, we get the standard su-
percoherent states associated to the supersymmetric harmonic oscilkiaEB”

Lauziere and Hussin, 1993; Fatygaal,, 1991)
|20, 61) = D(20)T(61)10; —). (117)

4.2. Generalized Supersqueezed States

Let us now find SAES associated to the sub-superalgebta bf, 1}. If the
coefficient ofa in the linear combination is invertible the problem reduces to solve
the eigenvalue equation:

[a+ yb+bf]ly) =zjy), y,8 € CBL. (118)
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We can show (see Appendix B, section SAESacf yb + sb'), that two
classes of independent solutions of the eigenvalue Eq. (118) exist and are given by

W=y =| Y Oai(l,y, 8%, 22) €910, =) =Y Oai (€, 8, v*, 21) €% [0;+)| Co
| £even ¢odd i

(119)
and ~ -

Wi+ =] D Oailt, v, 8%, 20) 4 [0;4+) =) Oai(€, 8, v*, 1) € 0; )| D3,
| Leven ¢odd i

(120)

whereCy and Djj are arbitrary and invertible Grassmann constants and

¢ factors
« L= e+
Ot (L, 7, 8%, 21) = 711 (r8'y 8" ) (@) — (@)™

(¢—j)factors j factors

1 £ i * * *
+£+—1;(_1),+z (& ys -z (---ys V"')(aT)Hl}’
(121)

where¢ =0, 1, 2,....
The superstates (119) and (120) can be written in the form of a supersqueeze
operator acting on the supercoherent state, i.e.,

;=) = Oever@', v, 8%, z1) eXxpl—(Oeveda’, v, 6%, z)) ™

x (Ooad@', 8, v*, 22)) €2 01D (z0)D(z1) 0, —)Co,  (122)
[¥;+) = Oeved@', 8, v*, 22) €Xpl—(Oeved@', 8, y*, 1)) *

x (Ooad@', v, 8%, 21)) €2 b]D(20)D(21)|0; +) D, (123)

where
Oever‘(aTa y7 8*1 Zl) = Z OaT (f, )/1 3*1 Zl) (124)
Leven
and
Oodd@’, v, 8%, 21) = Z Oat (L, v, 8%, 71). (125)
¢odd

4.2.1. Standard Supersqueezed States

In the case wherg and$ are odd Grassmann numbers, i.e., whes y;
ands = é;, it is easy to see from (121) that, the nonzélg operators in (119)
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and (120) corresponds to

a1 (0,71, =81, 21) = 1, Oai (1,81, —y1, z1) = 818" — 28,4 (a")?,
1
Oai (2,71, =01, 1) = —§V151(3T)2, (126)

and

Oat(0,81, —y1,21) =1, Oai (1, y1, =81, 21) = yal — 2y z1(a’)?,
1
Oat (2,81, —y1, 71) = —551)/1(3T)2a (127)

respectively. By inserting these results into (119) and (120), and after some simple
manipulations, we get the supersqueezed states

Wi = exp| —Spna | e e o -)co, (128)

and

1 T B
i +) = exp| —5dim(@’) e 712'0e?%|0; 1) DY, (129)

which are eigenstates af+ y1b + 81b'. In these last expressions, we notice the
action of a normalizer operator acting on the corresponding supercoherent states.
The normalizer in Eq. (128) transforms the algebra eleraenty;,b + §:b' into

a + y1b whereas the normalizer in Eq. (129) transforms it ite 8:b'. In fact, a
complete reduction into the elemendnly can be obtained. For instance, thatis the
case if we multiply the normalizer in Eq. (128) by the corresponding normalizer of
Eq. (105) inthe special case whege= 0, i.e., bye*?’lafb. Moreover, if we consider

the algebra elemeat+ Boa’ + y1b 4 8:bf, a normalizer operator transforming it

into the elemena is given by the standard supersqueeze operator (Buzzalg

1989)

(@f)?
2

Gl 11, 80) = exp (B + 115 % | expl-ssalb) exp-a. - (130)
In this way, using the algebra eigenstates (117) ofatlamnihilator, we observe
that a class of superalgebra eigenstates-offoa’ 4 y1b + §:bf, corresponding
to the eigenvaluey, is given by

G(Bo, y1, 81)D(20) T(61)10; —) Co. (131)

We notice that, these supersequeezed states are obtained by acting with a super-
squeeze operator that is an element of the osp(2/2) supergroup on the supercoher-
ent states associated to the supersymmetric harmonic oscillator. In this way, these
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SAES of the algebra elemeat+ foa’ + y1b + 8:b" are comparable to the su-
persqueezed states for the supersymmetric harmonic oscillator (Kogtetealk "
1993; Nieto, 1992).

4.2.2. Spin% Representation AES Structure

Let us consider now the special case where ho#nds are even invertible
Grassmann numbers. Let us wrjte= yo ands = o. In this case, from (121), we
obtain

(aT)‘Z

ye o
2 (y080)? exp( 1zlaT> , if £is even

Oai (¢, 0, 80, 21) = (aT) (132)
T(Voéo)“’l)/ 2ypexp-zal), if £is odd

Thus, by inserting these results in (124) and (125), we get
T
«/7/050a )* exp ¢ 2at
41

Oeven(a Yo, 80, Z1) = Z (

£even

= cosh{/yod0a’) e 2" explzi(y/y0d0) *
x (cosh{/yodoa’))tsinh(/yd0a’)]  (133)

and

Ocud@’, vo, 80, 22) = (v/80)™ \/_Z( )/o )EXP(—Z1aT)

¢odd

= (Ja’o)W%sinh(\/yoao al)exp-zal).  (134)

By inserting these results into (119) and (120) and after some manipulations,
we get the set of independent eigenstates fyb + sob':

¥; —) = expl-z2(a’ — (v/¥080) *Ta(ro, 80, a"))] coshly/vedoal — (/76)

x y/8o[1 + 21(2a" — (v/7080) " Th(y0. 80, a"))Ib} €'10; —)Co  (135)
and
¥; +) = expl-z1a’ — (v/7080) " Th(yo, 80, a’))] coshy/vodoa — (v/80)

x /Yol + z1(2a" — (v/7080) “Th(yo, 8. a"))]b} € |0;+)Dg,  (136)
where

Th(y0, 80, @) = (cosh(/yed0a’)) 1 sinh(/yod0al). (137)



sh(2/2) SAES and Generalized Supercoherent and Supersqueezed States 199

In the special case wherg = 0, (135) and (136) reduce to

;) = coshl/yodoa’ — (/70)*/dob'] €%'10; ~)Co
(/7o) Veosinhly/yoboal — (v/30) 1 /7ob] €510;+)Co (138)

and

[ +) = coshl/yedoal — (v/80) L\/7ob] €22 |0; +) D
= —(v/80) /7o sinhly/yedoa’ — (/70) v/d0b']1 €' |0; —) Dg,  (139)

respectively. By combining both Egs. (138) and (139), we can express the set of
independent solutions in the form

;) = exply/vodoal — (V7o) 1v/dob") €2210; —) Co (140)

and

15 +) = exply/od0a’ — (v/80) ty/70b) €2 10; +) Do. (141)

Thus, we recover the structure of the séirrepresentation algebra eigenstates
associated to the subalgeljea J., J_} of theh(2) ® su(2) Lie algebra (Alvarez-
Moraga and Hussin, 2002).

4.3. The General Case

Let us solve now the eigenvalue Eq. (95). The discussion at the end of section
4.2.1 shows that it can be reduced to a simpler one by expressing the eigenstate

V) as

[¥) = G(Bo, y1, 81)le). (142)

Indeed, inserting (142) into (95) and multiplying by the inverse of the supersqueeze
operatorG(fo, y1, 61), we get

[a+ Bral + yob + Sobl]le) = Z/g), (143)
where
B1 = B1+ Soy1 + vod1 € CBy,. (144)

We can show that (see Appendix B, section SAES &f Bal + yob + yob')
two classes of independent solutions of the eigenvalue Eq. (143) exit and are given

by
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L [Z exp( ,31()/050) )OaT(Z, vor 80, 21) €7 0; )

Ceven

oo P -1
- Z exp <—w (€ — 1)) Oat (€, 80, y0, 21) € |0;+)j| Co

(145)

and

8
o, +) [Z exp< ﬂl(yo 0 )(’)ar(ﬁ, 80, v0, 22) € |0; +)
¢ even

- Zexp( ﬂl(VO‘SO) (€— 1)) Oat (€, 10, 80, 21) eza*|o;—>] Dg,

¢odd
(146)

whereCy and D§ are arbitrary and invertible Grassmann constants.
Using the results (132) for th@,+ (¢, yo, S0, Z1) Operator, we get

lp; —) = [coshg/ yodo — B1ah) (L + Tu(vo, S0, Br, @1y vodo — Prz2) 22" &

X10;=) = (o)™ sinht/voso — Brat)y/yodo + Br e’ & 10;4)]Co
(147)

and

|¢; +) = [cosh(/ yobo — P1a")(1+Th(ro, 8o, r. a’)y/ vobo — Prz1) €722 &

x|0;+) — (80)~ Slnh(\/yoéo B aT)\/yoao + pre s &0 g,
(148)

where

Th(%0, 80, B1, a%) = (cosh{/ yodo — Brah) sinh(/yodo — pral).  (149)

4.3.1. Generalized Spig Representation AES Structure
In the special case wherg = 0, (147) and (148) reduce to

1 .
lp; —) = exp(_é(VO)_lﬁlaTbT>

cosh[y/vodo — Bral — (o) ™/ vodo + B1b'] e#2'|0;—)Co  (150)
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and

1 R
lp;+) = exp<—§(50)_l,31aTb)

coshf/ yodo — Bral — (80) "Ly vodo + P1b] €92 [0;+)D§,  (151)

respectively. Thus, we get a set of generalized SAES that contains the set of AES
associated to the sp%wepresentation that we have studied in section 4.2.2.

5. ISOSPECTRAL HARMONIC OSCILLATOR HAMILTONIANS
HAVING ODD INTERACTION TERMS

In this section we search for some isospectral harmonic oscillator systems
which are characterized by a Hamiltonian admitting an annihilation operator which
is a Grassmannian linear combination of the generators of the H-W Lie superal-
gebra, i.e., of the form

A=a+pa’ +yb+sb", B, y,8 €CB.. (152)
A family of nonequivalent such Hamiltoniaftscan be constructed if first we
consider a super-Hermitian Hamiltoniafy such that the commutator is given by
[Ho, Ag] = — Ao and Ap|Eg; £) =0, (153)
where
Ao=a+ pa’ +yb+8bf, ¥, 80 € CB,, (154)

B1 is given by (144) andEq; +) are the zero eigenvalue eigenstatesHgf In

this way, Aq is effectively an annihilation operator and its associated superalge-
bra eigenstates a class of supercoherent states for the system characterized by the
Hamiltonian™,. Second, according to the analysis of Appendix B, section SAES

of a+ Bial + yob + Sob', it is possible to construdt, satisfying

[H, Al = —A (155)
by taking
A = G(Bo, 1, 81)Ao(G(Bo, 11, 81)) " and
H = G(Bo, ¥1, 81)Ho(G(Bo, 1, 1)), (156)

whereG(fo, y1, 81) is the standard supersqueeze operator defined in (130). We see
that our original problem thus reduces to one of findhig We observe that the
Hamiltonian? in (156) is not super-Hermitian but it belongs to a class of Hamilto-
nians that generalize the onerppseudo-Hermitian Hamiltonians (Mostafazadeh,
2002). Indeed, it satisfies the relation

H=nHn ™, (157)
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wheren, is the super-Hermitian operator

1 = (G (o, y1, 81))* G (Bo, y1, 1) (158)

Let us mention that a family df{p-equivalent Hamiltonians can be obtained if we
replaceG(Bo, y1, 61) in (156) by a suitable osp(2/2) superunitary operator (Buzano
et al, 1989)

)2 2
a a .
( 2) — X6 — +T1a'bl + Ifab+ Aja’b + A{abf).

U(xo, T'1, A1) = exP(Xo >
(159)

WherexO € (CBLO andFl, Ay, € (CBLl-

Let us also mention that if we denoﬁ% the adjoint of.Aq, then the usual
commutator leads to

[Ao, Af] = 1 — BiBifa, al) + (8580 — ¥4 vo)[bl, b]
+2B18gatb — 250Blabt + 2B1ygalbl — 208 ab,  (160)
and we notice that, under the conditiors= §; = 0, orBl = 0, the commutator
(160) becomes a diagonal operator in the Fock vector lpasis), n € N}.
5.1. h(2) Generalized Isospectral Oscillator System

Let us here consider the particular case whegre- §o = 0. In this case, the
operatorA4y takes the simple form

Ao =a+ pial (161)
and the commutator (160) writes
[Ao, Al] = 1— Bipufa, af}. (162)

A class of Hamiltoniari{y satisfying (153) is given by
Ho = (L+ BB ALAo + B{ Ba(a)?a?]
=ala+ pi(@h)? + pla® + Blpi(a’a + aal) + Bipu(al)?a®.  (163)
We notice thatwe are in presence of a super-Hermitian Hamiltonian of the harmonic

oscillator type with nilpotent interaction terms which contain odd contributions.
We also notice that this hamiltonian can be expressed in the form

Ho=%”+M+Q++Q_. (164)

where

N =2Bpafa+aal), Q. =p@")? Q =pa®, M=ala-0,0.
(165)
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The nonzero supercommutation relations between these operators are given by

M, Q4] =£20., {Q,Q }=N, (166)

i.e., they have almost the structureuffi/1) superalgebra. Indeed, hekéis an
even nilpotent operator such th&® = 0.
According to (153) and (163), a class of superalgebra eigenstatés cdn
be obtained by applying times f =0, 1, 2,...) the raising operatoﬂlg on the
zero eigenvalue eigenstates4yd. From (45), we deduce that these latter are given
by
B

) 1,54
|Eo; j) = (1— Zﬂim) [m i) - 7|2 J)} (167)

where| corresponds to the sét, +}.
Then, asH|Eo; j) = 0, the generated energy eigenstates are given by

|En; i) o (AQ)"|Eo; ) ((a*)”+ﬂ Z(a*)(“ a(ah) ) |Eo;j)  (168)

and the corresponding energy eigenvaluefér& n. An orthonormalized version
of these states is given by

1.:4
|En: J) = (l— Zﬂfﬂl(Zn + 1))

[|n] +ﬂ1\/n(n— Hin—2;j) — ,/(n+1)(n+2|n+2 j:|

(169)

wheren € N. From (169), it is easy to calculate the actionAﬁ and .4, on the
|En; j) eigenstates, we get

) 1.:. .
AYJEn ) = (1— A 1)) T LEw ) (@70)
and
. 1.4 )
AolEn; j) = <1— éﬂfﬂln) VN|En_1; j). (171)

Thus, the orthonormalized energy eigenstdigs j ) can be written in the standard
form

(A"
Jnl

1ava
i) = (1+ SBiBinin + 1)) = (172)
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This is a complete set of states. Indeed, using (169), we can demonstrate the
completeness property

DY B iNEnil=1®1 =Y > "I j)n;jl. (173)
i n=0 j n=0

On the other hand, we can expressiing ) states in the form

In; j) = <1— Zﬂfﬂ1(2n+ 1)) [IEn; D= iv(n+ 10+ 2)|Enyz; J)%

2%
+ jvn(n — 1)|En-2; j)ﬁ—zl} : (174)

then, from (172) and after some manipulations, we get

A i 2’\
0; ) = (1 _ Zﬂ%ﬂl) exp((AO) ﬂl) = (175)

2

According to (45), the coherent states associated to a physical system characterized
by the hamiltonian (163) can be written as

R )2 R )3
0 ) = exp[—ﬁl% — up (a3)

] D(20)D(21)

1asa y2 o
8 (1_ Zﬂ%ﬂl) eXP((AZO) ﬂl) |Eo; })C(2, ). (176)

5.2. Spin% Generalized Isospectral Oscillator System

In the case wherél =0 andy§y0 = 5360, the operatord, takes the form
Ao = a+ yob + 8ob' (77)
and the commutator (160) writes
[Ao, Af] = 1. (178)
A class of Hamiltoniar#{y satisfying (153) is given by
Ho = AL Ao = a'a+ 1 yo + voa'b + ydab + sealbl + slab.  (179)

We notice that this is a super-Hermitian Hamiltonian, without defined parity, which
is a linear Grassmann combination of generators of the ¢2pf2 sh(2/2) Lie
superalgebra. Then, in this aspect, the corresponding HamiltGhidafined in
(156) complements the classes of Hamiltonians considered by Barah(1989).
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By construction, the eigenstates.4§ corresponding to the eigenvalne- 0
are eigenstates 6y corresponding to the eigenvalligg = 0. Let us take these
states to be the normalized version of states (140 and 141), mher®, i.e.,

[Eo, =) = (/14 (V70 (70 ) /o0(v/B0))
x D(v/000)[10;: =) — (/70)v/80l0;+)] (180)

and

[Eo,+) = (/14 (v80)"H(/30) 1) 7o(y/70))
x D(y/¥080)[10; +) — (v/80) - /7010; —)1. (181)

Thus, from (153) and (178), we deduce that a class of orthonormalized eigen-

states ofH, corresponding to the eigenvallg = nisgivenby 0 =0, 1, 2,.. .;

j = +)

_ Ai n

En, ) = 0
V!

Moreover, a class of normalized coherent states for this generalized harmonic
system which are eigenstates .4f corresponding to the eigenvalue= z; is
easily constructed as (Alvarez-Moraga and Hussin, 2002)

|20, |) = exploAl — Z5.Ao) | Eo, §). (183)

These coherent states are obtained from those of Egs. (140 and 141) by acting with
the following superunitary transformation:

U(20; v0, 80) = exp[zo(vg b + 85b) — Z5(vob + 8ob")].  (184)

|Eo, |- (182)

6. CONCLUSIONS

In this paper we have generalized the AES (Brif, 1997) concept to the one
of SAES. We have demonstrated that SAES associated to the H-W Lie super-
algebra contain the sets of standard coherent and supercoherent states associ-
ated to the usual and supersymmetric harmonic oscillator systems, respectively
(Alvarez-Moraga and Hussin, 2002; Aragone and Zypman, 1986; Fatygh
1991; Perelomov, 1986). Also, these SAES contain both the standard squeezed
and supersqueezed states (Nieto, 1992; Orszag and Salamo, 1988) and the su-
persqueezed states associated to the—s})irepresentation of the AES of the
h(2) & su(2) algebra (Alvarez-Moraga and Hussin, 2002). Let us mention that
the introduction of Grassmann coefficients in the linear combination of the su-
peralgebra generators helps us to understand the role played lbyntirabers
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(even Grassmann numbers) aththumbers (odd Grassmann numbers) interac-

tion coefficients, in the mentioned literature. Moreover, from the idea of giving

to SAES the interpretation of an operator associated to a physical system, we
have constructed some classes of super-Hermitiamastudo-super-Hermitian
Hamiltonians (DeWitt, 1984; Mostafazadeh, 2002), isospectral to the standard har-
monic oscillator hamiltonian. We have found their physical eigenstates and their
associated supercoherent states. In this respect, we see that the SAES concept
constitutes an alternative and unified approach for the construction of generalized
coherent and supercoherent and also squeezed and supersqueezed states for a given
quantum system.
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APPENDIX A
Notations and Conventions

In this Appendix we want to fix the notations and conventions used in this
work. They concern principally the concepts of Grassmann algebra, Lie superal-
gebra and their representations, super-Hermitian and superunitary operators, super
Lie algebra, and linear Lie supergroup.

Let us remind that a comple&rassmann algebraCB, is a linear vector
space over the field of complex numbers, associativeZargtaded. It may thus be
decomposed int& B, + CB_,, where the even spa€i, , is generated by the set
of 2-~1linearly independent generatdis of even level and the odd spaté, , is
generated by the set of 2! linearly independent generatds of odd level. Here,
the indexu represents either the empty getr the set (1, jo, ..., jn(w) Of N(u)
integer numbers such thatd j; < jz--- < jn) < L. N(u) is the level of the
generato€,,. The identity of the algebra i§;, = 1 and&, = £j1&j2- - - Ejne IS
the ordered product df (1) odd generators of level 1 taken among the set of basic
generatorg&;, j =1, 2,..., L}. The product of these generators is associative
and antisymmetric. Moreover, any nonzero product of the &ip€&> . .. &, of r
generators is linearly independent of the products containing less gererators
and we havegy&; = &6 = £,V =1, 2,..., L. The graduation is introduced
by defining the degree &, i.e.,

deg€, = (-1)N0, (185)
with N(¢) = 0.
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Any elementB € CB_ can be written either in the form

B=) B., B,eC, (186)
n
or as the sum of its even pa8p and its odd parB,, i.e., B = By + B; with
Bo= Y B.&w Bi= Y B (187)
evenN(u) oddN(u)

We also deduce the graded operations for the Grassmman algebra, i.e., for all
Bo, Zp € (CBLO, Bi, Z1 € (CBLl, we have

BoZo = ZoBo € CBy,, ByZy = Z1By € CBy,, B;Z; = —Z;B; € CB,. (188)
In particular, for allB = By + B; € CBL andZ; € CB_,,
Bz, = Z;B*, 7B =B*Zj, (189)
where
B* = Bo — By, (190)

is theconjugateof B. The product of any two elements of the algelBandB’,
corresponds to

BB =) > B.B, (), (191)
nwoow

with
& = £E,, where N(v) = N(w)+ N(u), (192)

when neither of the indices in the sets represented layd 11" is repeated, and
&,.£y =0, when at least one of the index in the set represented agd i’ is
repeated. The sigtt in (192) is determined by using the antisymmetric property
of the basic generatog when reordering the their product.

The identity component of the elemddtusually called the body, is denoted
by €(B) = B, € C, whereas the nilpotent quantig{B) = B — B,&, defines the
soul of B.

With respect to theomplex conjugatef the elemenB € CB,_, we follow
the conventions of Cornwell (1989) and thus write

B=Y B., (193)
"

i.e., the basis elemen, are considered as the real Grassmann numbers. Also,
theadjointof B is defined by the relation

B' =) B.&L, (194)
"
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where

L if N(u) is even
gi = { ! (195)

—i&,, if N(u)is odd.

This adjoint operation has the same properties than the ones of the usual adjoint
operation for complex matrices.
The inverse of a Grassmann numlBrdenoted by B) %, is defined as

BBy '=(B)!B=¢, =1 (196)

It is important to mention thaB is invertible if and only ifB, # 0.
The integration with respect to an odd Grassmann variable must be considered
in the Berezin sense (Berezin, 1987), i.en & CB,, then

/dn =0, /ndn ~1, (197)

where the integration is taken over all the domain of definition.of
Let us now recall some useful definitions and properties of Lie superalgebras,
supergroups, and associated representations.

Definition A1. A (m/n) dimensional complex Lie superalgeltg is a complex
vector spaceZ, graded with respect to a generalized Lie product, formed from
the direct sum of two subspaces, the even subspace of dimensiod, which we
denote byLy, and the odd subspace of dimensior 0 (m+ n > 1), which we
denote byL1, such that, for alh, b € Ls, there exists a generalized Lie product
(supercommutator)g], b] with the following properties:

1) [a,b] € L, foralla, b e Ls;
2) foralla, b, c € L5 and any complex (real) numbersand g,

[@a + Bb, c] = a[a, c] + B[b, c]; (198)

3) if a andb are homogeneous elementsfthen g, b] is also a homoge-
neous element of s whose degree is (deg+ degb) mod 2; that is, &, b]
is odd if eithera or b is odd, but §, b] is even ifa andb are both even or
if a andb are both odd;

4) for any homogeneous elemeatandb of L

[b, a] = —(—1)e9a)deda p): and (199)

5) for any three homogeneous elememtb, andc of L5, we have the gen-
eralized Jacobi identity:

[a, [b, c]l(— 1)(dega)(dGQC) + b, [c, a]](— 1)(degb)(dega)
+[a, [b, cJ(—1)4e9e® = 0, (200)
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We notice that the even subspadg®, is an ordinary complex Lie algebra
whereas the odd subspad®,, is a carrier space for a representation of a Lie
algebraly.

Just as an ordinary Lie algebra can, in general, be represented by a set of
complex matrices, a Lie superalgebra can also be represented, in general, by a set
of complex matrices. Nevertheless, the graded character of a superalgebra implies
certain special conditions for the structure of these matrices.

Definition A2. Suppose that for evepy/ e L, there exists a matrik(a) from the
set of complex matrices partitioned in the fordg (d1) x (do/d1), that we denote
by M(dp/d;; C), such that

1) foralla, b € Ls ande, B of the field of Cs,

I'(ea+ Bb) = al'(a) + BT(b); (201)
2) foralla, b € Ls,
I'([a, b)) = [I'(a), ['()]; (202)
3) if a € Lo, the even subspace gf, thenI'(a) a la forme
0
r@ = (FO(())(a) F11(a)> , (209)

wherel'gg(a) andl'y(a) aredy x dgandd; x d; dimensional submatrices,
respectively; and i& € L1, the odd subspace gf, thenI"(a) has the form

0 Ton(a)
r@= (Flo(a) 0 ) , 209

whereTlp1(a) andTMp(a) aredy x d; andd; x dy dimensional submatri-
ces, respectively. Then these matridgg) are said to form adp/d;)-
dimensionagraded representatioaf Ls.

Let L5 be a (n/n) dimensional complex Lie superalgebra with even basis el-
ementsy, a, ..., any and odd basis elemerds, 1, 8mi2, - - -, 8nin, represented
by the set of matriceB(ax), k = 1, 2,..., m+ n. To each matrixb(ay), we can
associate a linear operatd(ayx) acting on the carrier spadé® of the represen-
tation. This space is alf + d;) inner product vector space expanded by a basis
formed by the set of even vectdisy;)}2., and the set of odd vectofw; )} |
and this action is defined by the relation

do+d;

D(ag)wi) = Y (M@ wi). (205)

i=1
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ThenLs can also be represented by set of even operdi¢ag)(k =1, 2,..., m)
and the set of odd opertos(ay)(k = m+ 1, m+2,..., m+ n), verifying the
same supercommutation relations as the basis eleragkts- 1, 2,..., m+ n).
Let x to be a polynomial function of thé€s superalgebra generators, with
complex Grassmannian coefficients. We say thas a super-Hermitian(anti-
super-Hermitian) operator jf = x*(x = —x?). In particular, ifx is a complex
Grassmannian linear combination of thesuperalgebra generators, i.e.,

x = Clo@)+ ) D‘d(am), (206)
j=1 k=1

whereC) e CB.(j =1,2...,m)andDX e CB_(k =1, 2..., n) then

m n
xF =Y (@@ (CH + > ((@amu) (DY, (207)
j=1 k=1
where the symbol is reserved for the usual adjoint operation. We say that a general
U operator isuperunitaryif YU = U*U = |, wherel , is the identity operator. In
particular, if x is an anti-super-Hermitian operator, tHén= e* is a superunitary
operator.

If for j =1,2,...,mand every elemenf, of CB_, we define the even
operators

M) = &, ®(ay) (208)

and fork =1, 2,...,n and every odd elemerdt, of CB_, we define the even
operators

NK = £,®(@m+x), (209)

then the set ofri 4+ n)2-—* operators defined by Egs. (208) and (209) form a
basis of ain + n)2-~* dimensional real Lie algebra, whose Lie product is given
by the usual commutator induced by the generalized Lie produ€t.ofhis real

Lie algebra is denoted bgs(CB_) and is called auper Lie algebraA general
elementM of this super Lie algebra writes

M =Zm: > XM+ n > OkNE, (210)

j=1evenu k=1 oddv

whereX), and® are real parameters. Also we can write this element in the form

m n
M =2;le1 +;®ka, (211)
j= =
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whereX! = o0 XhE, € RB,, ©F = ¥ g, OKE, € RBy, and
M) =&,@(a;), N*=ED(am:x)- (212)

Let us end this Appendix by giving a method of construction of a linear Lie
supergroup(Rogers, 1981). ILs(CB.) is a real super Lie algebra whose basis
elements are defined by (208) and (209), then every linear Lie group whose associ-
ated real Lie super algebra is given BY(CB,) is a (n/n) linear Lie supergroup,
which we denote bgs(CB,). The elements near the identity can be parametrized
by

m n
G(X; ©) = exp{M} = exp{ Y " XIM! +Z@ka}. (213)
j=1 k=1

APPENDIX B
Solving [a + Bat + b + 6b']|¢) = z|v)

In this Appendix we will solve the eigenvalue Eg. (95). We will do it in two
steps. Firstly, we will solve the eigenvalue Eg. (118) and express its solutions in
terms of a generalized supersqueeze operator acting on the supercoherent states
€7|0; &). This supersqueeze operator is used to reduce the eigenvalue Eq. (95) to a
simpler one (see section 4.3) that is to the eigenvalue equation (143). Finally, we
will solve the eigenvalue Eq. (143).

SAES of a- yb + sb'

Let us solve the eigenvalue Eq. (118). The solution is assumed on the type
(97) and by inserting it into (118), then using the usual properties of the operators
and the state§n; £)}, we get the systern(= 0, 1, 2...)

vn+1Chi1 4+ yD} =zCn (214)
VN4 1Dpy1 + 8CF = zDn. (215)

Let us notice the symmetric form of this system. Proceeding by iteration, we can
express th&€,, and D, coefficients in terms of the arbitrary Grassmann constants
CoandDg,ie.(n=1,2,...),

1 (n-1)
Cn= _{z”cO — Y ARy (2D
J/n! =
(n=2) (n—2—k1)
+ Z Z Z(n_z_kl_kZ)y(Z*)kzcs*ZleQ
k1=0 k2=0
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(n—=3) (N—3—ki) (n—3—k1—kz)
SR i e
ki=0 k=0 k3=0

+ (=)0 (y sy (23] Fn_o[1] } (216)

and

1 (n—1)
Dn { r‘IDO_ Z(n 1- kl)S(Z )le*
VGl kX%

(h=2) (—2—ky)

+ Z Z Z(n—2—k1—k2)5(z*)k2y*zk1 DO

ki=0 k=0

(n—3) ("—3—ky) (—3—ky—ky)
_ Z Z Z Z(n—S—kl—kz—k3)5(Z*)k3y*sz),(Z*)klca‘ +
k=0 ko=0 ks=0

where [j] represents the entire part §fandFo = Co, F1 = D§, Go = Do, G1 =

C;§. Here we need to calculate the multiple summation. By expressiag
a sum of their even and odd partg,= 2z, + z;, we get, for example,
=12,...,n

(n—¢) (n—¢—ky) (n—€—ky—ky—---—Ky_1)
L Z(n—é—k1—k2—-~—kg)y(Z*)k[ S*Zkg,ly(z*)k[,za* L.

ki=0 k=0 k=0
¢ factors
= m{ (y&*ys*--)zo
(¢—j)factors j factors
L=

@_’_1 Z( :I')J+Z (VS*VS* )Zl(~'~y8*y...)}z(()nzl)

=04, v, 8%, 21)7", (218)
Zn

whereQ;, is the differential operator
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¢ factors

1| —— 8@ a€+l
OZO(K: Vs 8*1 Zl) = E (]/5*)/8* . ) E — Zl@

(¢—j)factors j factors

1 4 ) gttt
+£+—12( D* (ys*ys )z (- y8ty azé“}
(219)
which is also defined fof = 0, in factO, (0, y, §*, z1) = 1. By inserting (218)
into (216) and (217), we get the compact form@fand D, coefficients, i.e.,

n

Cn= ;( D Oy(t, 7,8, 21)—— N F 4] (220)
and
ZZ( 1) 0468, 7", 2) N Gy (221)

By inserting (220) and (221) into (97) and then separating the terms to multi-
ply arbitrary constant€, and Dy, we obtain two independent solutions for the
eigenvalue Eq. (118):

oo 2[n/2]
[Z > Oy, v, 8%, zl)\/_

n=0 ¢even
iZ(n%Z] 1 Pl ]
h—1  iodd V!

and

FI

00 /
Wi+) = [ZZOZO(EM zl)f|n+>

=0 ¢ even

oo 2[(n+1)/2]-1

—Z > Ozo(ﬁ,y,rS*,zl)%|n;—>}Dg. (223)

n=1 ¢ odd
As Oy (¢, v, 8%, 21)2" = 0, whent > n, we can spread out the sum 6mdex up
to infinity and then place it out of the sum corresponding torthiedex. In this
way, we can add up on threindex and express (222) and (223) on the form
Y —) = [ Y Og(t, v, 8%, )€ 10, —) — Y Og(t, 8, v, zl)eza*|o;+>}co
£even ¢ odd
(224)
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and

i 4) = [ 3 0n(t, 8, v, )€ |0 4) — D Oy(L, v, 8, zl)eza*|o;—>] D,

feven ¢odd
[ (225)
respectively. Finally, using the fact thﬁ{; e?d = (al)’e®® we get the generalized
supersqueezed states (119) and (120).

SAES OFa + Bial + ~ob + éob'
Let us solve the eigenvalue Eq. (143) by takipg again on the form (97).

By inserting it into (143), and proceeding as in the above sections, we get the

algebraic systerm(= 1, 2...)

VN +1Cny1 + 1D} + VNB1Cht = 26y, (226)
VN + 1Dnj1 + 80C;; + +/NB1Dpoy = 2D, (227)
together with
C1 =2C — Dy, (228)
D; = 2Dy — 8,C}. (229)

Again, we notice the symmetric form of this algebraic system. Proceeding by

iteration, we can express tl@&, and D, coefficients in terms of the arbitrary
Grassmann constanB andDg, we get 6 =2, 3,...)

2[3] (=) (n—t—r1) (n—t=r5)  (N—L=T( )

S R-1I ) M MD SEES

evend=2 k;=0 k=0 k3=0 ke—1=0

(koj—1 + 12" ez 2 (24 (y/v0d0) B1 | Co
1

J

4
2

1 | AR e o) ()

3D 3 30 DS

odd¢=3 k1:0 kz:0 k3=0 kg,1:0

[5]
D (kgj + DTNz oz 29 yo80) Pyopa | DG, (230)

=1
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1 2[5]  (n—0) (n—t—r1) (N—t—13)  (N—f—T¢_2)
Dp=Dp— — .

n — n
VN | o2 k=0 k=0 kg=0 Ke_1=0

L

2
3 (kejp + D)2 @Yz (2 y050) 2P | Do

j=1

1 [ A 0yt ()

m 0ddé=3 k;=0 k=0 ks=0 ke—1=0
[5] R
D (koj + 12Tz Zez L 29 yod0) Pyopa | Cp, (231)

=1

where
4
re=> K (232)
j=1

and, in accordance with Egs. (220) and (221),

(=1 O (t, v, 80, 22)——F, " (233)
&) e
and
(—1) O£, 80, yo, 21) G (234)
; 2 \/— 2]
Using the fact that fof even, we have
Z(nfﬁ—rl,l)(z*)kl,lzkg,z . (Z*)kl — Zgn—f) +[(n -0
—2(k + kg + - ke)]Z5 Dz (235)
for ¢ odd, we have
Z(n_l_rl—l)(z*)kt—lzkl—z Lo o (n ) +[(n =€) — 2(ko + ka
Yk A (236)

and that

(n=0) (n—L=r1) (n—€=rz)  (N—€=T-2)

> Ak (237)

ki=0 k=0 k=0 ke_1=0
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is equal to
- 1)! )
%’ if Ak)=1 and ¢> 2,
- 1! )
2(n — én_ 1)!)“ _ 1)!’ if Aé(k) = (kl + k3 +---+ kefl)
and ¢£=2,4,...,
£(n — 1)!
2(n — g(rl 1)|()€ _ 1), |:(n - Z) if Aé(k) = (kl +ks+---+ kg_]_)z
+g(n—£+1)}, and ¢=2,4,..., (238)
¢—1)(n - 1)! _
% if Ap(k) = (ko + kg + - + ko)
and ¢=3,5,...,
¢—1)(n—¢+1)(n—1)! _
i A0 = (et ko kea)
and ¢=3,5,...,
and after some manipulations, we can reduce (230) and (231) to
« A
Ch=Cy— ——
2/nt
oo (o, (D=0 e v, > -2
|:eve2n€: 2 (n— Z)'(Z 1)! (ZO + €+ 1)20 (v/v0do) :| Co
2[4y
-1 e _ .
2J_ { (n_ e)).ng. 59 (V/yob0) Syo} D; (239)
odd¢=3
and
= B
D, = Dy —
2/nt

A n! -0, N=0) 1, _
8 |: Z m(zo + (E+1)ZO >(\/7/0(30)(Z 2 Do

even?=2
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2[I’H~l 1 .
[ 2. (n_e))lng. 0 (Vrodo) %6o | C5, (240)

odd¢=3

respectively. Then, using the fact that

n! ol aK a€+1 n! nféflz _, a@-‘rl zn
-0 “\oz  HeZm) P oe—p AT HEEs

(241)
we can write (239) and (240) in the form
_& B
=G
2[3] 1 aK 8K+l z 8@ s
0 — 11 \\a¢ v/ Yobo
ev;::z(g_l)! az§ lehé“) (¢+1)a z+1) "(Vro Co
2 2[M]-1
P1 2. (e—-1)( o .
2/n! ddzg o \azy zf;+1 (Vrob) *ro | D5 (242)
odd(= .
= B
D, = D, —
" 2./nt
2[3] 1 5¢ 9+l 7 9ttt o
w— 1 \\52¢ v/ Yol
. evgzz(ﬁ—l)! 9z} Zlazo (z-l-l)a 1 Z"(v/v080) Do
~ 2[ l
B -1 gt+ s )
| 2 g ) W9 | G @49)

respectively. We notice that, when the inverse of the proggfgtexist, or even if
it does not exist, we can write formally these last equations in the compact form

. ~ s0)-1 2[3]
Ch=Cn— m |: Z ZOZO(E 0, 60, Co

2 event=2 \/_
~ PR 2[1-1 Zn
+w Z (£ — 1)O4 (¥, o, S0, 21)— Do (244)
odd¢=3 f
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and
“ B 2[2]
~ PBi(yodo)t = z"
Dh=Dnh— —F——7 £O4(¢, 80, Y0, Z1)—= | Do
2 ev§=2 \/m
~ _ 2[4 -1
Br(yodo) ™t | T2 z"
NRLEYCL (€ — 1)Os5, (¢, 80, v0, 21)—— | CE.  (245)
2 | e Vo

Now, by inserting (244) and (245) into (97) and proceeding exactly as in Appendix
B (section SAES of + yb + ébf), we get the two independent solutions (145)
and (146).
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