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The superalgebra eigenstates (SAES) concept is introduced and then applied to find
SAES associated to the sh(2/2) superalgebra, also known as Heisenberg–Weyl Lie su-
peralgebra. This implies to solve a Grassmannian eigenvalue superequation. Thus, the
sh(2/2) SAES contain the class of supercoherent states associated to the supersym-
metric harmonic oscillator and also a class of supersqueezed states associated to the
osp(2/2)D sh(2/2) superalgebra, where osp(2/2) denotes the orthosymplectic Lie su-
peralgebra generated by the set of operators formed from the quadratic products of the
Heisenberg–Weyl Lie superalgebra generators. The properties of these states are inves-
tigated and compared with those of the states obtained by applying the group-theoretical
technics. Moreover, new classes of generalized supercoherent and supersqueezed states
are also obtained. As an application, the super-Hermitian andη-pseudo-super-Hermitian
Hamiltonians without a defined Grassmann parity and isospectral to the harmonic
oscillator are constructed. Their eigenstates and associated supercoherent states are
calculated.

KEY WORDS: superalgebra eigenstates; supercoherent; supersqueezed; Grassmann
variables.

1. INTRODUCTION

The algebra eigenstates (AES) associated to a real Lie algebra have been
defined as the set of eigenstates of an arbitrary complex linear combination of the
generators of the considered algebra (Brif, 1996, 1997). According to the partic-
ular realization of the Lie algebra generators, the determination of AES implies,
for instance, to solve an ordinary or a partial differential equation, to apply the
operator technics, etc. For example, in the case of the su(2) Lie algebra, different
approaches have been used such as the constellation formalism (Bacry, 1978),
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the ordinary first-order differential equations (Brif, 1997) or the operator method
(Alvarez-Moraga, 2000). The same methods have also been applied to find AES
for the su(1, 1) Lie algebra (Alvarez-Moraga, 2000; Brif, 1997). In the case of the
two-photon AES, associated to the su(1, 1)D h(2) Lie algebra, uses have been done
of ordinary second-order differential equation (Brif, 1996). More recently, AES
associated to theh(2)⊕ su(2) Lie algebra have been obtained using these types of
methods (Alvarez-Moraga and Hussin, 2002). In particular (Brif, 1997) it has been
demonstrated that the generalized coherent states (GCS) associated to the SU(2)
and SU(1, 1) Lie groups, based on group-theoretical approach (Perelomov, 1986),
are subsets of the sets of AES associated to their corresponding Lie algebras.
Moreover, the super coherent states of the supersymmetric harmonic oscillator
(Cooper and Freed-Man, 1983; Salam and Strathdee, 1975; Salomonson and Van
Holten, 1982; Wess and Zumino, 1971) as defined by Aragone and Zypman (1986)
and a new class of supercoherent and supersqueezed states regarded as minimum
uncertainty states have been obtained (Alvarez-Moraga and Hussin, 2002). Gener-
alized supercoherent states (GSCS) associated to Lie supergroups have also been
calculated following a generalized group-theoretical approach. This is the case,
for example, of the supercoherent states associated to the following supergroups:
Heisenberg–Weyl (H–W) and OSp(1/2) (Fatygaet al., 1991)U (1/2) (Hussin and
Nieto, 1993; Sarkar, 1991),U (1/1) (Pelezzola and Topi, 1992), and OSp(2/2) (El
Gradechi and Nieto, 1996).

In the view of these approaches we ask the question of how we can gen-
eralize the AES concept valid for Lie algebras to Lie superalgebras. In general,
as the even subspace of a Lie superalgebra is an ordinary Lie algebra, it is clear
that the new concept must generalize in an appropriate form the AES concept.
Indeed, the set of superalgebra eigenstates (SAES) associated to linear combina-
tions of even generators of the Lie superalgebra must contain the AES associated
to the Lie algebra generated by these generators. Moreover, we expect that the
SAES associated to a certain class of superalgebras contain the GSCS of the re-
lated Lie supergroups. Another criterion to define the SAES concept starts from
the utility that we can give to this concept when we study a particular quantum
system, more precisely when we want to know the eigenstates of a physical observ-
able represented by a super-Hermitian operator formed by a linear combination
of the superalgebra generators or by a suitable product of these generators. Ac-
cording with these requirements, we propose the following definition of the SAES
concept.

Definition 1.1. SAES associated to a Lie superalgebra correspond to the set of
eigenstates of an arbitrary linear combination, with coefficients in the Grassmann
algebraCBL , of the superalgebra generators. This means that ifL is a superalgebra
generated by the set of even operators8(a1),8(a2), . . . 8(am) and the set of odd
operators8(am+1),8(am+2), . . . ,8(am+n), SAES associated toL are determined
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by the eigenvalue equation[
m+n∑
i=1

Bi8(ai )

]
|ψ〉 = Z|ψ〉, (1)

whereBi ∈ CBL , ∀i = 1, 2,. . . , m+ n, andZ ∈ CBL .

In general, the superstate|ψ〉 is a linear combination, with coefficients in
CBL , of the basis vectors of a graded super-Hilbert spaceW, the representation
space of the superalgebra on which it acts.

Let us here mention that Appendix A contains the notations and conventions
used in the context of Grassmann algebras, Lie superalgebras, and supergroups.
This will help for a good understanding of this work.

From the preceding definition, we see that to know explicitly SAES associated
to a given Lie superalgebra, we must analyze case by case the different possible
solutions of the Grassmannian eigenvalue equation (1), taking into account both
the domain of definition of the Grassmann coefficients and the parity of them. In
general, the calculations can be long and fastidious, but in physical applications,
some simplifications appear because of some constraints on the coefficients like
assuming a certain type of parity.

A natural generalization of the concept of AES to SAES starts with H–W
superalgebra sh(2/2) generated by the bosonic operatorsa, a†, and I and the
fermionic onesb and b†. We expect to recover the usual algebra eigenstates
(Alvarez-Moraga and Hussin, 2002; Aragone and Zypman, 1986; Orszag and
Salamo, 1988) but also supercoherent and supersqueezed states based on a group-
theoretical approach (Kosteleck´y et al., 1993; Nieto, 1992).

Let us remind that the well-known bosonic algebra is generated by the even
operatorsa, a†, andI , which satisfy the usual nonzero commutation relation

[a, a†] = I , (2)

and act on the usual Fock spaceFb = {|n〉, n ∈ N}, as follows:

a|n〉 = √n|n− 1〉, a†|n〉 = √n+ 1|n+ 1〉, n ∈ N. (3)

The operatorsa, a† are the usual annihilation and creation operators of the har-
monic oscillator, andI acts as the identity operator. The corresponding fermionic
superalgebra is generated by the odd operatorsb, b† and the even operatorI , which
satisfy the nonzero supercommutation relation

{b, b†} = I . (4)

These operators act on the graded spaceF f = {|+〉, |−〉} as follows:

b|+〉 = |−〉, b|−〉 = 0, b†|+〉 = 0, b†|−〉 = |+〉. (5)

Taking the all set{a, a†, I , b, b†} satisfying the nonzero supercommutation rela-
tions (2) and (4), we get the H–W superalgebra sh(2/2). Its acts naturally on the
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graded Fock spaceFb ⊗ F f = {|n,±〉, n ∈ N}. To compute SAES of this superal-
gebra, we will consider linear combinations over the field of Grassmann numbers.
This means that, in general, we will deal with linear combinations of the bosonic
(even) and fermionic (odd) operators with the coefficients taking values in the set
CBL .

The paper will be thus distributed as follows. In section 2, we will determine
SAES associated to the bosonic H–W Lie algebra. A significant difference with
respect to the other approaches is now that linear combinations of generators is
considered over the field of Grassmann numbers. Connections with preceding
approaches will be made. In section 3, fermionic H–W Lie superalgebra will
be considered. These special SAES cases will give a good understanding of the
specificities induced by working with Grassmann-valued variables and will help us
to give a complete description of SAES associated to the H–W Lie superalgebra in
section 4. Finally, in section 5, Hamiltonians which are isospectral to the harmonic
oscillator one will be constructed and their associated supercoherent states will
be described. The notations and conventions used in this work will be revised in
Appendix A, whereas the details of calculus of SAES of section 4 will be presented
in Appendix B.

2. SAES ASSOCIATED TO THE HEISENBERG–WEYL LIE
ALGEBRA, GENERALIZED SUPERCOHERENT,
AND SUPERSQUEEZED STATES

SAES associated to the H–W Lie algebra will be obtained as the states|ψ〉
that verify the eigenvalue equation,

[ A−a+ A+a† + A3I ]|ψ〉 = Z|ψ〉, (6)

whereA±, A3, andZ ∈ CBL . From the structure of this equation, we expect to
recover the usual results concerning, in particular, the eigenstates ofa, i.e., the
standard coherent states of the harmonic oscillator (Perelomov, 1986). That is
the reason why we begin our considerations by taking firstA+ = A3 = 0. In this
context, we will distinguish between the cases where (A−)φ is zero and not zero.
Next, the general combination (6) will be considered with (A−)φ 6= 0. This means
that A− is an invertible Grassmann number and the relation (6) thus reduces to

[a+ βa†]ψ〉 = z|ψ〉, β, z ∈ CBL . (7)

2.1. Generalized Coherent States

If we takeA+ = A3 = 0, the eigenvalue Equation (6) thus writes

A−a|ψ〉 = Z|ψ〉. (8)
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Let us assume a solution of the type

|ψ〉 =
∞∑

n=0

Cn|n〉, Cn ∈ CBL . (9)

By inserting (9) into (8), applying (3) and using the orthogonality property of states
{|n〉}∞n=0, we get to the following recurrence relation:

A−Cn+1 = ZCn√
n+ 1

, n = 0, 1,. . . . (10)

Here we must consider two cases: the cases (A−)φ 6= 0 and (A−)φ = 0.
In the first case, (A−)φ 6= 0 is thus an invertible quantity and we can isolate

the coefficientCn+1 in (10). It is easy to show that we get

Cn = ((A−)−1Z)n

√
n!

C0, n = 1, 2,. . . . (11)

SAES associated to the operatorA−a with eigenvalueZ are then given by

|z〉 =
∞∑

n=0

zn

√
n!

C0|n〉 =
∞∑

n=0

(za†)n

n!
C0|0〉 = eza†C0|0〉, (12)

where z= (A−)−1Z. As we are interested in normalized eigenstates, we take
(C0)φ 6= 0 and the eigenstates can be written as

|z〉 = D(z0)D(z1)|0〉, (13)

where

D(z0) = exp(z0a† − z‡0a), D(z1) = exp (z1a† − z‡1a), (14)

z0 = ((A−)−1Z)0 andz1 = ((A−)−1Z)1.
We notice that the generalized coherent states associated to the harmonic

oscillator system, considered as eigenstates of the annihilation operatora, are here
given by (13) whenA− = εφ , i.e., whenz0 = Z0 andz1 = Z1. These states are
obtained by applying successively the superunitary operatorsD(Z1) andD(Z0) to
the fundamental state|0〉.

In the second case, i.e., when (A−)φ = 0, we cannot obtain a simple closed
expression to describe all the algebra eigenstates. A class of solution is

Cn = (C1(C0)−1)n

√
n!

C0, n = 2, 3,. . . , (15)

together with

A−C1 = ZC0 (16)
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andC0 is an arbitrary coefficient such that (C0)φ 6= 0. The condition (16) implies
that Zφ = 0 and is equivalent to the following system of superequations:

(A−)0(C1)0+ (A−)1(C1)1 = Z0(C0)0+ Z1(C0)1, (17)

(A−)0(C1)1+ (A−)1(C1)0 = Z0(C0)1+ Z1(C0)0, (18)

where we have decomposedA−, C0, C1 andZ into their even and odd parts. This
system can be solved to giveC1 in terms ofC0. A set of normalized eigenstates cor-
responding to the eigenvalueZ = αA−, α ∈ C, is given by the standard coherent
states

|αεφ〉 = exp (αεφa† − ᾱεφa)|0〉 = D(αεφ)|0〉. (19)

So, in the special case when (A−)0 = 0, the algebra eigenstates of the odd operator
(A−)1a contain the set of coherent states of the standard harmonic oscillator.

2.1.1. Density of Algebra

It is interesting to mention that we can interpret this last result in terms of the
concept of density of algebra. Indeed, let us define the odd operators

A− = z‡1a, A+ = −z1a, z1 ∈ CBL1. (20)

By integrating these operators with respect to the corresponding odd variable, we
get

a =
∫
A−dz‡1, a† =

∫
dz1A+, (21)

i.e.,A− andA+ fulfill the role of a linear density of the annihilationa and the
creationa†, respectively. We notice that

[a, a†] =
∫
{A−, A+} dz†1 dz1, {a, a†} =

∫
[A−, A+] dz†1 dz1, (22)

i.e., the commutator and anticommutator of the even operatorsa anda† are ob-
tained by integrating, on the entire odd Grassmann space, the anticommutator
and commutator of the odd operatorsA− andA+, respectively. This suggests the
following definitions of the densiy of identityI and of an energy type densityH:

I = {A−, A+} = z1z‡1, H = [A−, A+] = w

2
z1z‡1{a, a†}. (23)

As we know, the eigenstates of the annihilation operator corresponding to
the complex eigenvalueα are given by the standard harmonic oscillator coherent
states|α〉 = D(α)|0〉. They verify the eigenvalue equation

a|α〉 = α|α〉. (24)
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Multiplying both sides of this equation byz‡1, and then integrating with respect to
this Grassmann variable and finally using (21), we get∫

A−|α〉 dz‡1 =
∫
αz‡1|α〉 dz‡1, (25)

i.e., by comparing both sides of this last equation, we conclude that a class of
eigenstates of the odd operatorA− corresponding to theαz‡1 eigenvalue are given
by the standard harmonic oscillator coherent statesεφ|α〉.

2.2. Generalized Supersqueezed States

Let us now solve the eigenvalue Equation (7). A class of solutions can be
constructed firstly, by expressing|ψ〉 in terms of a generalized su(1, 1) squeeze
operator (the normalizer of the H–W algebra), following this way the construction
of the standard squeezed states associated to the simple harmonic oscillator system
(Orszag and Salamo, 1988). Indeed, let us write

|ψ〉 = S(X0)|ϕ〉, (26)

where the squeeze operatorS(X0) is given by

S(X0) = exp

(
X0

(a†)2

2
− X ‡0

a2

2

)
, (27)

with X0 an even invertible Grassmann number,X ‡0 its adjoint (see Appendix A).
Inserting (26) into (7), using the relation

S‡(X0)aS(X0) = cosh(‖X0‖)a+
√
X0
(√
X ‡0
)−1

sinh(‖X0‖)a†, (28)

where‖X0‖ =
√
X0X ‡0 and choosingX0 in such a way that it satisfies√
X0
(√
X ‡0
)−1

sinh(‖)X0‖)+ β0 cosh(‖)X0‖) = 0, (29)

we get the following eigenvalue equation for|ϕ〉:
[G(X0, β)a+ β1 cosh(‖X0‖)a†]ϕ〉 = z|ϕ〉, (30)

where

G(X0, β) = cosh(‖X0‖)+ β
√
X ‡0
(√
X0
)−1

sinh(‖X0‖). (31)

Let us notice that this last coefficient can be written on the form

G(X0, β) = G(X0, β0)
(
εφ + β1(G(X0, β0))−1

√
X ‡0 (

√
X0)−1 sinh(‖X0‖)

)
(32)
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where, taking into account (29),

G(X0, β0) = [εφ − β2
0X
‡
0 (X0)−1

]
cosh(‖X0‖). (33)

Multiplying both sides of Eq. (30) by the inverse ofG(X0, β) and taking into
account (32), we get

[a+ β̂1a†]|ϕ〉 = ẑ|ϕ〉, (34)

where

β̂1 = β1(G(X0, β0))−1 cosh(‖X0‖) ∈ CBL1, (35)

and

ẑ= [(G(X0, β0))−1− β1

√
(X ‡0 )

(√
X0
)−1

sinh(‖X0‖)
]
z. (36)

Equation (34) is thus simpler to solve than (7). Indeed, we can again try a solution
of the type

|ϕ〉 =
∞∑

n=0

Cn|n〉, Cn ∈ CBL . (37)

Inserting it into (34), using the raising and lowering properties of the operatorsa†

anda, and the orthogonality conditions of the states{|n〉}, we get the recurrence
relation

Cn+1 =
[
ẑCn −√nβ̂1Cn−1

]
√

n+ 1
, n = 2, . . . , (38)

with

C1 = ẑC0, (39)

andC0 is an arbitrary constant. Proceeding by iteration, we get

Cn = 1√
n!

(
ẑn −

n−2∑
k=0

(k+ 1)ẑ(n−2−k)(ẑ∗)kβ̂1

)
C0, n = 2, 3,. . . . (40)

This expression may be written in a closed form. Indeed, as we can show that

n−2∑
k=0

(k+ 1)ẑ(n−2−k)(ẑ∗)k = n(n− 1)

2!
(ẑ0)n−2− n(n− 1)(n− 2)

3!
(ẑ0)n−3 ẑ1 (41)

= 1

2!

∂2

∂ ẑ2
0

(ẑ0)n − 1

3!

∂3

∂ ẑ3
0

(ẑ0)n ẑ1, (42)
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the relation (40) becomes

Cn = 1√
n!

(
ẑn −

[
1

2!

∂2

∂ ẑ2
0

(ẑ0)n − 1

3!

∂3

∂ ẑ3
0

(ẑ0)n ẑ1

]
β̂1

)
C0, n = 2, 3,. . . ,

(43)

which is also valid forn = 1. Finally, inserting this result into (37), and after some
manipulations, we obtain a general solution of (34), which is

|ϕ〉 =
[
eẑ1a† − β̂1

(a†)2

2!
+ ẑ1β̂1

(a†)3

3!

]
eẑ0a† |0〉C0. (44)

A normalized version of (44) is given by

|ϕ〉 = exp

[
−β̂1

(a†)2

2
− ẑ1β̂1

(a†)3

3

]
D(ẑ0)D(ẑ1)|0〉Ĉ(ẑ, β̂1), (45)

where the operatorD has been defined in (14). The normalization constantĈ is
given by

Ĉ(ẑ, β̂1) = (
√
0)−1

[
εφ + 1

2
(
√
0)−1Ä(

√
0)−1

]
, (46)

with

0(ẑ, β̂1) = εφ − 1

2
((ẑ‡)2β̂1+ (β̂1)‡ẑ2)− 1

3
((ẑ‡)3ẑ1β̂1+ (β̂1)‡(ẑ1)†ẑ3) (47)

and

Ä(ẑ, β̂1) =
[

1

6
((ẑ‡)3ẑ1ẑ2+ (ẑ‡)2(ẑ1)‡ẑ3)

+ ((ẑ‡)2ẑ1ẑ+ (ẑ‡)ẑ1+ (ẑ‡)(ẑ1)‡ẑ2+ (ẑ1)‡ẑ)

− 1

4
((ẑ‡)2ẑ2+ 4ẑ‡ẑ+ 2)

]
(β̂1)‡β̂1

− 1

9
((ẑ‡)3ẑ3+ 9(ẑ‡)2ẑ2+ 24ẑ‡ẑ+ 6)(ẑ1)‡ẑ1(β̂1)‡β̂1

− ((ẑ‡0)2β̂1+ (β̂1)‡(ẑ0)2)(ẑ1)‡ẑ1.

From (26) and (45) we conclude that a class of normalized solutions of the
eigenvalue equation (7), corresponding to the eigenvaluez, is given by the gener-
alized supersqueezed states

|ψ〉 = S(X0) exp

[
−β̂1

(a†)2

2
− ẑ1β̂1

(a†)3

3

]
D(ẑ0)D(ẑ1)|0〉Ĉ(ẑ, β̂1). (48)

Let us now give some examples of such states.
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2.2.1. Standard Supersqueezed States

The standard supersqueezed states are obtained from (48) whenβ1 = 0 and
z1 = 0, i.e., whenβ̂1 = 0, ẑ1 = 0, andẑ0 = (G(X0, β0))−1z0. They are given by

|ψ〉 = S(X0)D(ẑ0)|0〉, (49)

whereX0 andẑ0 remain even Grassmann-valued numbers.

2.2.2. A New Class of Supersqueezed States

Another class of supersqueezed states appears in (48), because of the possi-
bility to choose in (7) a nonzero odd component of the variableβ. For example, if
we chooseβ0 = 0, i.e.,X0 = 0, β̂1 = β1, andẑ= z, then from (48) we obtain the
following class of states:

|ψ〉 = exp

[
−β1

(a†)2

2
− z1β1

(a†)3

3

]
D(z0)D(z1)|0〉Ĉ(z, β1). (50)

They are obtained by applying the operator

exp

[
−β1

(a†)2

2
− z1β1

(a†)3

3

]
(51)

to the generalized coherent states (13) ofa. In the special case wherez1 = 0, we
get to the normalized supersqueezed states

|ψ〉 =
[
εφ + 1

4
β
‡
1β1

(
z2

0(z‡0)2+ 4z0z‡0 + 2
)]

exp

[
−1

8
β
‡
1β1(a2(a†)2+ (a†)2a2)

]
× exp

[
−
(
β1

(a†)2

2
− β‡1

a2

2

)]
D(z0)|0〉, (52)

which are written in terms of the superunitary operatorS(−β1) as defined in (27).
Moreover, in the case whereβ1 ∈ RBL1, this last equation becomes

|ψ〉 = S(−β1)D(z0)|0〉, (53)

i.e., we are in the presence of a class of supersqueezed states which are constructed
by applying the superunitary supersqueeze operatorS(−β1) to the standard har-
monic oscillator coherent states.

3. SAES ASSOCIATED TO THE FERMIONIC SUPERALGEBRA

In this section, we will construct SAES associated with the fermionic su-
peralgebra generated by{b, b†, I } which satisfy the nonzero supercommutation
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relation (4). The general eigenvalue equation writes as

[B−b+ B+b† + B3I ]|ψ〉 = Z|ψ〉, B±, Z ∈ CBL . (54)

Here we will distinguish again two cases: firstly whenB+ = B3 = 0 and secondly
whenB− is invertible so that Eq. (54) reduces to

(b+ δb†)|ψ〉 = z|ψ〉, δ, z ∈ CBL . (55)

3.1. Theb-Fermionic Eigenstates

Let us solve

Bb|ψ〉 = Z|ψ〉, B, Z ∈ CBL . (56)

Since the fermionic graded Fock space is reduced to the vectors|−〉 (even) and
|+〉 (odd) which act as in (5), a solution of (56) writes as

|ψ〉 = C|−〉 + D|+〉, C, D ∈ CBL . (57)

Inserting (57) into (56) and using (5), we get

BD∗|−〉 = ZC|−〉 + Z D|+〉. (58)

The orthogonality of the states|−〉 and|+〉 leads to the following set of algebraic
equations:

BD∗ = ZC, ZD= 0, (59)

or by conjugation of the first one,

B∗D = Z∗C∗, ZD= 0. (60)

Let us mention that, whenBφ = 0, we have evidently the normalized solution
|ψ〉 = |−〉when the eigenvalueZ is zero, but because of the presence of Grassmann
value quantities, whenBφ = 0, we have a larger set of solutions. For instance, for
B = B1, we find a solution of the form

|ψ〉 = C|−〉 ± B1|+〉. (61)

Normalized eigenstates are given by

|ψ〉 = exp[±(B1b† + B‡1b)]|−〉. (62)

When Z 6= 0, nontrivial solutions appear if and only ifZφ = 0. From (60),
we haveDφ = 0. To solve completely the system (60), we have to distinguish two
cases.

If Bφ 6= 0, we can solveD from the first equation of (60)

D = (B∗)−1Z∗C∗ = (B−1Z)∗C∗ = z∗C∗, (63)
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where z= z0+ z1 = (B−1Z). Now inserting (63) into the second equation of
(60), we get

Zz∗C∗ = 0. (64)

Normalized solutions will be obtained ifCφ 6= 0 and we thus get

Zz∗ = 0, (65)

which can be written explicitly

z2
0 = 0, z0Z1 = z1Z0. (66)

The normalized eigenstates ofBb with the eigenvalueZ satisfying (66) are
given by

|ψ〉 = |−〉 + z∗|+〉)C, (67)

whereC is an arbitrary Grassmann number such thatCφ 6= 0. They can be written
as

|z0; z1〉 = T(z1)T(z0)|−〉, (68)

where the superunitary operatorsT are given by

T(z1) = exp(b†z1− z‡1b), T(z0) = exp(z0b† − z‡0b). (69)

Theb-SAES are obtained from (68) whenB = εφ , so thatz0 = Z0 andz1 = Z1. We
notice that whenz0 = 0, they reduce to the standard supercoherent states associated
to the system characterized by the fermionic HamiltonianH = b†b− 1

2.
If Bφ = 0, the problem is a little more tricky. We can write (59) explicitly as

B0d0− B1d1 = Z0c0+ Z1c1, (70)

B1d0− B0d1 = Z1c0+ Z0c1, (71)

Z0d0+ Z1d1 = 0, (72)

Z1d0+ Z0d1 = 0, (73)

where we have takenC = c0+ c1 and D = d0+ d1. In this way, for instance,
whenB0 6= 0 and (B0)2 6= 0, we can combine (70) and (71) to obtain

(B0)2d0 = (B0Z0− B1Z1)c0+ (B0Z1− B1Z0)c1, (74)

(B0)2d1 = (B1Z0− B0Z1)c0+ (B1Z1− B0Z0)c1, (75)

and then combine this last system of equations with (72) and (73) to get

Z0(2B1Z1− B0Z0)c0+ B1(Z0)2c1 = 0, (76)

Z0(2B1Z1− B0Z0)c1+ B1(Z0)2c0 = 0. (77)
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The systems (74 and 75) and (76 and 77) are equivalent to

(B0)2D = BZ∗C∗ (78)

and

Z0(2B1Z1− B0Z0+ B1Z0)C = 0, (79)

respectively. As we search for normalized solutions, we must takeCφ 6= 0. This
implies the following condition for theZ eigenvalue:

Z0(2B1Z1− B0Z0) = 0, (80)

B1(Z0)2 = 0. (81)

Then, the normalized eigenstates of (56) corresponding to theZ eigenvalue satis-
fying (80 and 81) are given by (57), withC an arbitary Grassmann number such
thatCφ 6= 0, andD verifying (78).

Following a similar procedure, whenB0 = 0 and B1 6= 0, the normalized
solutions of (56) corresponding to theZ eigenvalue satisfying the conditions:

(Z0)2 = 0, Z0Z1 = 0, (82)

are given by (57), withCφ 6= 0, andD verifying

B1D = −Z∗C∗. (83)

WhenB0 6= 0 andB1 = 0, the solutions corresponding to theZ eigenvalue satis-
fying the conditions

(Z0)2 = 0, (84)

are given by (57), withCφ 6= 0, andD verifying

B0D = Z∗C∗. (85)

Other classes of solutions can be reached by imposing other conditions on the
coefficientB.

3.2. Supersqueezed States

Let us now solve the eigenvalue (55). If we assume again a solution of the
type (57), then by inserting it into (55), using the raising and lowering properties
(5) and the orthogonality between the sates|−〉 and |+〉, we get the following
algebraic Grassmann equations for determiningC andD:

D∗ = zC, (86)

δC∗ = zD. (87)
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By conjugating Eq. (86) and then by inserting it into (87), we get

(zz∗ − δ)C∗ = 0. (88)

As we are interested in normalized solutions, we must takeCφ 6= 0, and then (88)
implies

z2
0 = δ, (89)

i.e.,δ is an even Grassmann number. Inserting (86) into (57) and considering the
conditions (89), we conclude that a set of normalized eigenstates of the operator
(b+ δ0b†) corresponding to the eigenvaluez= ±√δ0+ z1 is given by

|δ0, z1〉± =
(|−〉 − (z1∓

√
δ0)|+〉)C. (90)

It is not too hard to show that the corresponding normalized supersqueezed states
are given by

|δ0, z1〉± = exp
(
b†z1− z†1b

)
exp[±

√
δ0(b† + z‡1)]|−〉N±(δ0, z1), (91)

where the normalization constantN± is given by

N±(δ0, z1) = F−1

[
εφ ∓ 1

2
F−1(

√
δ0z‡1 + (

√
δ0)‡z1∓

√
δ0(
√
δ0)‡z‡1z1)F−1

]
,

(92)

with

F(δ0) =
√

1+
√
δ0(
√
δ0)‡. (93)

We notice that in the limitδ0 7→ 0 the supersqueezed states (91) become the
eigenstates of the operatorb corresponding to the eigenvaluez= z1.

4. SAES ASSOCIATED TO THE HEISENBERG–WEYL
LIE SUPERALGEBRA

Let us now compute SAES associated to the H–W Lie superalgebra gener-
ated by the set of generators{a, a†, I , b, b†} whose nonzero super-commutation
relations are given by the relations (2) and (4). The eigenvalue equation is written
as

[A−a+ A+a† + A3I + B−b+ B+b†]|ψ〉 = Z|ψ〉, A±, A3, B±, Z ∈ CBL . (94)

Here we concentrate in the case where (A−)φ 6= 0, i.e., A− is an invertible
Grassmann number. In this case, we can express (94) in the form

[a+ βa† + γb+ δb†]|ψ〉 = z|ψ〉, β, γ , δ, z ∈ CBL . (95)
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Special cases of this problem have been considered in sections 2 and 3. Here
we consider the cases where we have the presence of both bosonic and fermionic
operators in the eigenvalue Eq. (95).

4.1. Generalized Supercoherent States

First, we take the particular eigenvalue equation

[a+ γb]|ψ〉 = z|ψ〉, γ , z ∈ CBL . (96)

Let us assume a solution of the type

|ψ〉 =
∞∑

n=0

(Cn|n;−〉 + Dn|n;+〉), (97)

whereCn, Dn ∈ CBL . By inserting (97) in (96), using the lowering properties of
operatorsa andb, Eqs. (3) and (5), and the orthogonality properties of the graded
Fock space basis{|n;−〉, |n;+〉, n ∈ N}, we get the recurrence relations

√
n+ 1Cn+1+ γ D∗n = zCn, (98)
√

n+ 1Dn+1 = zDn. (99)

From (99), it is easy to find the expression of the coefficientsDn in terms of an
arbitrary constantD0:

Dn = zn

√
n!

D0, n = 1, 2,. . . . (100)

Then, by inserting (100) in (98), we get the following recurrence relation for the
coefficientsCn:

Cn+1 = 1√
n+ 1

[
zCn − γ (z∗)n

√
n!

D∗0

]
, n = 0, 1, 2,. . . . (101)

Finally, proceeding by iteration we get

Cn = 1√
n!

[
znC0−

(
n−1∑
k=0

z(n−1−k)γ (z∗)k

)
D∗0

]
, n = 1, 2,. . . , (102)

whereC0 is an arbitrary constant. SicneC0 andD0 are arbitrary constants, Eq. (97)
gives two independent solutions. The first one consists of the standard coherent
states

|z;−〉 =
∞∑

n=0

zn

√
n!

C0|n;−〉. (103)
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To find the second one, we use the formula

1

n+ 1

n∑
k=0

z(n−k)γ (z∗)k = (γ0zn
0 + znγ1

)
. (104)

We thus get the generalized coherent states on the form

|z̃, γ ;+〉 = |z, γ̃0, γ1;+〉 =
[ ∞∑

n=0

zn

√
n!
|n;+〉 − a†

∞∑
n=0

(
γ0zn

0 + znγ1
)

√
n!

|n;−〉
]

D∗0

= exp[−(γ0(1+ z1a†)+ γ1)a†b]eza† |0;+〉D∗0. (105)

The normalized version of the states (103) is given by

|z;−〉 = |z0, z1;−〉 = D(z0)D(z1)|0;−〉. (106)

It is similar to the one obtained in (13). A set of normalized generalized superco-
herent states, orthogonal to (106), is given by the formula

|z, γ ,+〉 = |z0, z1, γ0, γ1;+〉 = |z, γ̃0, γ1,+〉 − |z;−〉〈−; z|z, γ̃0, γ1,+〉
‖|z, γ̃0, γ1,+〉 − |z;−〉〈−; z|z, γ̃0, γ1,+〉‖ .

(107)

After some claculations, we get the set of generalized supercoherent states

|z0, z1, γ0, γ1;+〉 = D(z0)D(z1)

{
|0;+〉

−
[(

1− 1

2
z‡1z1

)
D(−z1)(a† + z‡0)γ0ez1z‡0 + (1+ z‡1z1)a

†γ1

− (1− z†1z1)z‡γ0ez1z‡0

]
|0;−〉

}
N(z0, z1, γ0, γ1), (108)

where the normalization constantN is given by

N(z0, z1, γ0, γ1) = B−1
[
1− B−1

(
γ
‡
1 γ1− γ ‡0 γ0

(
z‡0z0

)2)
z‡1z1B−1

]
, (109)

with

B(γ0, γ1) =
√

1+ γ ‡γ =
√

1+ γ ‡0 γ0+ γ ‡0 γ1+ γ ‡1 γ0+ γ ‡1 γ1. (110)

4.1.1. Supercoherent States

The supercoherent states (108) constitute a generalization of the supercoher-
ent states found by Aragone and Zypman (1986). Indeed, from Eqs. (108–110) we
see that, in the case whereγ1 = 0 andz1 = 0, we have

|z0, 0,γ0, 0;+〉 = (√1+ γ ‡0 γ0
)−1D(z0)(|0;+〉 − γ0a†|0;−〉). (111)



P1: KEF,IZO,JQX,GAD

International Journal of Theoretical Physics [ijtp] pp1166-ijtp-484393 April 28, 2004 4:51 Style file version May 30th, 2002

sh(2/2) SAES and Generalized Supercoherent and Supersqueezed States 195

4.1.2. Other Classes of Supercoherent States

Now if in (108–110), we takeγ0 = 0 andz0 = 0, we get

|0, z1, 0,γ1;+〉 =
(

1− 1

2
γ
‡
1 γ1− γ ‡1 γ1z‡1z1

)
D(z1)

× (|0;+〉 − (1+ z‡1z1
)
a†γ1|0;−). (112)

We can also distinguish the case whereγ1 = 0 andz0 = 0. We get

|0, z1, γ0, 0;+〉 = (√1+ γ ‡0 γ0
)−1D(z1){

|0;+〉 + γ0

[(
z‡1z1

2
− 1

)
D(−z1)a† + z‡1

]
|0;−〉

}
. (113)

4.1.3. Standard Supercoherent States

In the case whereγ = 0, (108) becomes the standard coherent states

|z;+〉 = |z0, z1;+〉 = D(z0)D(z1)|0;+〉. (114)

By combining the two independent solutions (106) and (114), we can construct a
solution of the type

|z; ρ , τ 〉 = ρ|z;−〉 + τ |z;+〉, (115)

whereρ andτ are Grassmann numbers such thatρ1z1 = τ1z1 = 0. Thus the states
(115) are eigenstates ofa corresponding to the eigenvaluez. In particular, if we
take, for example,ρ = 1− z‡1 z1

2 andτ = −z1, then we obtain the supercoherent
states

|z〉 = D(z0)D(z1)T(z1)|0;−〉. (116)

Moreover, if we takez1 = 0, ρ = 1− θ
‡
1 θ1

2 andτ = −θ1, we get the standard su-
percoherent states associated to the supersymmetric harmonic oscillator (B´erubé-
Lauzière and Hussin, 1993; Fatygaet al., 1991)

|z0, θ1〉 = D(z0)T(θ1)|0;−〉. (117)

4.2. Generalized Supersqueezed States

Let us now find SAES associated to the sub-superalgebra{a, b, b†, I }. If the
coefficient ofa in the linear combination is invertible the problem reduces to solve
the eigenvalue equation:

[a+ γb+ δb†]|ψ〉 = z|ψ〉, γ , δ ∈ CBL . (118)
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We can show (see Appendix B, section SAES ofa+ γb+ δb†), that two
classes of independent solutions of the eigenvalue Eq. (118) exist and are given by

|ψ ;−〉 =
[ ∞∑
` even

Oa†(`, γ , δ∗, z1) eza† |0;−〉 −
∞∑
` odd

Oa† (`, δ, γ
∗, z1) eza† |0;+〉

]
C0

(119)

and

|ψ ;+〉 =
[ ∞∑
` even

Oa† (`, γ , δ∗, z1) eza† |0;+〉 −
∞∑
` odd

Oa†(`, δ, γ
∗, z1) eza† |0;−〉

]
D∗0,

(120)

whereC0 andD∗0 are arbitrary and invertible Grassmann constants and

Oa†(`, γ , δ∗, z1) = 1

`!

{ ` factors︷ ︸︸ ︷
(γ δ∗γ δ∗ · · ·) ((a†)` − z1(a†)`+1)

+ 1

`+ 1

∑̀
j=0

(−1) j+`
(`− j ) factors︷ ︸︸ ︷

(γ δ∗γ δ∗ · · ·) z1

j factors︷ ︸︸ ︷
(· · · γ δ∗γ · · ·) (a†)`+1

}
,

(121)

where` = 0, 1, 2,. . . .
The superstates (119) and (120) can be written in the form of a supersqueeze

operator acting on the supercoherent state, i.e.,
|ψ ;−〉 = Oeven(a

†, γ , δ∗, z1) exp[−(Oeven(a
†, γ , δ∗, z1))−1

× (Oodd(a
†, δ, γ ∗, z1)) e2z1a†b†]D(z0)D(z1)|0;−〉C̃0, (122)

|ψ ;+〉 = Oeven(a
†, δ, γ ∗, z1) exp[−(Oeven(a

†, δ, γ ∗, z1))−1

× (Oodd(a
†, γ , δ∗, z1)) e2z1a†b]D(z0)D(z1)|0;+〉D̃∗0, (123)

where

Oeven(a
†, γ , δ∗, z1) =

∞∑
` even

Oa†(`, γ , δ∗, z1) (124)

and

Oodd(a
†, γ , δ∗, z1) =

∞∑
` odd

Oa†(`, γ , δ∗, z1). (125)

4.2.1. Standard Supersqueezed States

In the case whereγ andδ are odd Grassmann numbers, i.e., whenγ = γ1

andδ = δ1, it is easy to see from (121) that, the nonzeroOa† operators in (119)
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and (120) corresponds to

Oa†(0, γ1,−δ1, z1) = 1, Oa†(1, δ1,−γ1, z1) = δ1a† − 2δ1z1(a†)2,

Oa†(2, γ1,−δ1, z1) = − 1

2!
γ1δ1(a†)2, (126)

and

Oa†(0, δ1,−γ1, z1) = 1, Oa†(1, γ1,−δ1, z1) = γ1a† − 2γ1z1(a†)2,

Oa†(2, δ1,−γ1, z1) = − 1

2!
δ1γ1(a†)2, (127)

respectively. By inserting these results into (119) and (120), and after some simple
manipulations, we get the supersqueezed states

|ψ ;−〉 = exp

[
−1

2
γ1δ1(a†)2

]
e−δ1a†b†eza† |0;−〉C0, (128)

and

|ψ ;+〉 = exp

[
−1

2
δ1γ1(a†)2

]
e−γ1a†beza† |0;+〉D∗0, (129)

which are eigenstates ofa+ γ1b+ δ1b†. In these last expressions, we notice the
action of a normalizer operator acting on the corresponding supercoherent states.
The normalizer in Eq. (128) transforms the algebra elementa+ γ1b+ δ1b† into
a+ γ1b whereas the normalizer in Eq. (129) transforms it intoa+ δ1b†. In fact, a
complete reduction into the elementa only can be obtained. For instance, that is the
case if we multiply the normalizer in Eq. (128) by the corresponding normalizer of
Eq. (105) in the special case whereγ0 = 0, i.e., bye−γ1a†b. Moreover, if we consider
the algebra elementa+ β0a† + γ1b+ δ1b†, a normalizer operator transforming it
into the elementa is given by the standard supersqueeze operator (Buzanoet al.,
1989)

G(β0, γ1, δ1) = exp

[
−(β0+ γ1δ1)

(a†)2

2

]
exp(−δ1a†b†) exp(−γ1a†b). (130)

In this way, using the algebra eigenstates (117) of thea annihilator, we observe
that a class of superalgebra eigenstates ofa+ β0a† + γ1b+ δ1b†, corresponding
to the eigenvaluez0, is given by

G(β0, γ1, δ1)D(z0)T(θ1)|0;−〉C0. (131)

We notice that, these supersequeezed states are obtained by acting with a super-
squeeze operator that is an element of the osp(2/2) supergroup on the supercoher-
ent states associated to the supersymmetric harmonic oscillator. In this way, these
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SAES of the algebra elementa+ β0a† + γ1b+ δ1b† are comparable to the su-
persqueezed states for the supersymmetric harmonic oscillator (Kosteleck´y et al.,
1993; Nieto, 1992).

4.2.2. Spin1
2 Representation AES Structure

Let us consider now the special case where bothγ andδ are even invertible
Grassmann numbers. Let us writeγ = γ0 andδ = δ0. In this case, from (121), we
obtain

Oa†(`, γ0, δ0, z1) =


(a†)`

`!
(γ0δ0)`/2 exp

(
− `

`+ 1
z1a†

)
, if ` is even

(a†)`

`!
(γ0δ0)(`−1)/2γ0 exp(−z1a†), if ` is odd

. (132)

Thus, by inserting these results in (124) and (125), we get

Oeven(a
†, γ0, δ0, z1) =

∞∑
` even

(
√
γ0δ0 a†)`

`!
exp

(
− `

`+ 1
z1a†

)
= cosh(

√
γ0δ0a†) e−z1a† exp[z1(

√
γ0δ0)−1

× (cosh(
√
γ0δ0 a†))−1 sinh(

√
γ0δ0 a†)] (133)

and

Oodd(a
†, γ0, δ0, z1) = (

√
δ0)−1√γ0

∞∑
` odd

(
√
γ0δ0 a†)`

`!
exp(−z1 a†)

= (
√
δ0)−1√γ0 sinh(

√
γ0δ0 a†) exp(−z1a†). (134)

By inserting these results into (119) and (120) and after some manipulations,
we get the set of independent eigenstates ofa+ γ0b+ δ0b†:

|ψ ;−〉 = exp[−z1(a† − (
√
γ0δ0)−1Th(γ0, δ0, a†))] cosh{

√
γ0δ0 a† − (

√
γ0)−1

×
√
δ0[1+ z1(2a† − (

√
γ0δ0)−1Th(γ0, δ0, a†))]b†} eza† |0;−〉C0 (135)

and

|ψ ;+〉 = exp[−z1(a† − (
√
γ0δ0)−1Th(γ0, δ0, a†))] cosh{

√
γ0δ0 a† − (

√
δ0)−1

×√γ0[1+ z1(2a† − (
√
γ0δ0)−1Th(γ0, δ0, a†))]b} eza† |0;+〉D∗0, (136)

where

Th(γ0, δ0, a†) = (cosh(
√
γ0δ0a†))−1 sinh(

√
γ0δ0a†). (137)
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In the special case wherez1 = 0, (135) and (136) reduce to

|ψ ;−〉 = cosh[
√
γ0δ0 a† − (

√
γ0)−1

√
δ0b†] ez0a† |0;−〉C0

= −(
√
γ 0)−1

√
δ0 sinh[

√
γ0δ0 a† − (

√
δ0)−1√γ0b] ez0a† |0;+〉C0 (138)

and

|ψ ;+〉 = cosh[
√
γ0δ0 a† − (

√
δ0)−1√γ0b] ez0a† |0;+〉D∗0

= −(
√
δ0)−1√γ0 sinh[

√
γ0δ0 a† − (

√
γ0)−1

√
δ0b†] ez0a† |0;−〉D∗0, (139)

respectively. By combining both Eqs. (138) and (139), we can express the set of
independent solutions in the form

˜|ψ ;−〉 = exp(
√
γ0δ0 a† − (

√
γ0)−1

√
δ0b†) ez0a† |0;−〉C̃0 (140)

and

˜|ψ ;+〉 = exp(
√
γ0δ0 a† − (

√
δ0)−1√γ0b) ez0a† |0;+〉D̃0. (141)

Thus, we recover the structure of the spin1
2 representation algebra eigenstates

associated to the subalgebra{a, J+, J−} of theh(2)⊗ su(2) Lie algebra (Alvarez-
Moraga and Hussin, 2002).

4.3. The General Case

Let us solve now the eigenvalue Eq. (95). The discussion at the end of section
4.2.1 shows that it can be reduced to a simpler one by expressing the eigenstate
|ψ〉 as

|ψ〉 = G(β0, γ1, δ1)|ϕ〉. (142)

Indeed, inserting (142) into (95) and multiplying by the inverse of the supersqueeze
operatorG(β0, γ1, δ1), we get

[a+ β̂1a† + γ0b+ δ0b†]|ϕ〉 = z|ϕ〉, (143)

where

β̂1 = β1+ δ0γ1+ γ0δ1 ∈ CBL1. (144)

We can show that (see Appendix B, section SAES ofa+ β̂a† + γ0b+ γ0b†)
two classes of independent solutions of the eigenvalue Eq. (143) exit and are given
by
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|ϕ;−〉 =
[ ∞∑
` even

exp

(
− β̂1(γ0δ0)−1

2
`

)
Oa†(`, γ0, δ0, z1) eza† |0;−〉

−
∞∑
` odd

exp

(
− β̂1(γ0δ0)−1

2
(`− 1)

)
Oa†(`, δ0, γ0, z1) eza† |0;+〉

]
C0

(145)

and

|ϕ,+〉 =
[ ∞∑
` even

exp

(
− β̂1(γ0δ0)−1

2
`

)
Oa†(`, δ0, γ0, z1) eza† |0;+〉

−
∞∑
` odd

exp

(
− β̂1(γ0δ0)−1

2
(`− 1)

)
Oa†(`, γ0, δ0, z1) eza† |0;−〉

]
D∗0,

(146)

whereC0 andD∗0 are arbitrary and invertible Grassmann constants.
Using the results (132) for theOa†(`, γ0, δ0, z1) operator, we get

|ϕ;−〉 = [cosh(
√
γ0δ0− β̂1 a†)(1+ Th(γ0, δ0, β̂1, a†)

√
γ0δ0− β̂1z1) e−z1a† eza†

×|0;−〉 − (γ0)−1 sinh(
√
γ0δ0− β̂1 a†)

√
γ0δ0+ β̂1 e−z1a† eza† |0;+〉]C0

(147)

and

|ϕ;+〉 = [cosh(
√
γ0δ0− β̂1a†)(1+Th(γ0, δ0, β̂1, a†)

√
γ0δ0− β̂1z1) e−z1a† eza†

×|0;+〉− (δ0)−1 sinh(
√
γ0δ0−β̂1 a†)

√
γ0δ0+ β̂1 e−z1a† eza† |0;−〉]D∗0,

(148)

where

Th(γ0, δ0, β̂1, a†) = (cosh(
√
γ0δ0− β̂1 a†))−1 sinh(

√
γ0δ0− β̂1 a†). (149)

4.3.1. Generalized Spin12 Representation AES Structure

In the special case wherez1 = 0, (147) and (148) reduce to

|ϕ;−〉 = exp

(
−1

2
(γ0)−1β̂1a†b†

)
cosh

[√
γ0δ0− β̂1 a† − (γ0)−1

√
γ0δ0+ β̂1 b†

]
ez0a† |0;−〉C0 (150)
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and

|ϕ;+〉 = exp

(
−1

2
(δ0)−1β̂1a†b

)
cosh[

√
γ0δ0− β̂1 a† − (δ0)−1

√
γ0δ0+ β̂1 b] ez0a† |0;+〉D∗0, (151)

respectively. Thus, we get a set of generalized SAES that contains the set of AES
associated to the spin12 representation that we have studied in section 4.2.2.

5. ISOSPECTRAL HARMONIC OSCILLATOR HAMILTONIANS
HAVING ODD INTERACTION TERMS

In this section we search for some isospectral harmonic oscillator systems
which are characterized by a Hamiltonian admitting an annihilation operator which
is a Grassmannian linear combination of the generators of the H–W Lie superal-
gebra, i.e., of the form

A = a+ βa† + γb+ δb+, β, γ , δ, ∈ CBL . (152)

A family of nonequivalent such HamiltoniansH can be constructed if first we
consider a super-Hermitian HamiltonianH0 such that the commutator is given by

[H0,A0] = −A0 and A0|E0;±〉 = 0, (153)

where
A0 = a+ β̂1a† + γ0b+ δ0b†, γ0, δ0 ∈ CBL0, (154)

β̂1 is given by (144) and|E0;±〉 are the zero eigenvalue eigenstates ofH0. In
this way,A0 is effectively an annihilation operator and its associated superalge-
bra eigenstates a class of supercoherent states for the system characterized by the
HamiltonianH0. Second, according to the analysis of Appendix B, section SAES
of a+ β̂1a† + γ0b+ δ0b†, it is possible to constructH satisfying

[H,A] = −A (155)

by taking

A = G(β0, γ1, δ1)A0(G(β0, γ1, δ1))−1 and

H = G(β0, γ1, δ1)H0(G(β0, γ1, δ1))−1, (156)

whereG(β0, γ1, δ1) is the standard supersqueeze operator defined in (130). We see
that our original problem thus reduces to one of findingH0. We observe that the
HamiltonianH in (156) is not super-Hermitian but it belongs to a class of Hamilto-
nians that generalize the one ofη-pseudo-Hermitian Hamiltonians (Mostafazadeh,
2002). Indeed, it satisfies the relation

H‡ = ηHη−1, (157)
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whereη is the super-Hermitian operator

η = (G−1(β0, γ1, δ1))‡G−1(β0, γ1, δ1). (158)

Let us mention that a family ofH0-equivalent Hamiltonians can be obtained if we
replaceG(β0, γ1, δ1) in (156) by a suitable osp(2/2) superunitary operator (Buzano
et al., 1989)

U (χ0, 01,11)= exp

(
χ0

(a†)2

2
−χ‡0

a2

2
+ 01a†b†+0‡1ab+11a†b+1†1ab†

)
,

(159)

whereχ0 ∈ CBL0 and01,11, ∈ CBL1.
Let us also mention that if we denoteA‡0 the adjoint ofA0, then the usual

commutator leads to

[A0,A‡0] = 1− β̂‡1 β̂1{a, a†} + (δ‡0δ0− γ ‡0 γ0)[b†, b]

+ 2β̂1δ
‡
0a†b− 2δ0β̂

‡
1ab† + 2β̂1γ

‡
0 a†b† − 2γ0β̂

‡
1ab, (160)

and we notice that, under the conditionsγ0 = δ0 = 0, or β̂1 = 0, the commutator
(160) becomes a diagonal operator in the Fock vector basis{|n,±〉, n ∈ N}.

5.1. h(2) Generalized Isospectral Oscillator System

Let us here consider the particular case whereγ0 = δ0 = 0. In this case, the
operatorA0 takes the simple form

A0 = a+ β̂1a† (161)

and the commutator (160) writes

[A0,A‡0] = 1− β̂‡1 β̂1{a, a†}. (162)

A class of HamiltonianH0 satisfying (153) is given by

H0 = (1+ β̂‡1 β̂1)[A†0A0+ β̂‡1 β̂1(a†)2a2]

= a†a+ β̂1(a†)2+ β̂‡1a2+ β̂‡1 β̂1(a†a+ aa†)+ β̂‡1 β̂1(a†)2a2. (163)

We notice that we are in presence of a super-Hermitian Hamiltonian of the harmonic
oscillator type with nilpotent interaction terms which contain odd contributions.
We also notice that this hamiltonian can be expressed in the form

H0 = N
2
+M+Q+ +Q−, (164)

where

N = 2β̂‡1 β̂1(a†a+ aa†), Q+ = β̂1(a†)2, Q− = β̂‡1a2, M = a†a−Q+Q−.
(165)
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The nonzero supercommutation relations between these operators are given by

[M,Q±] = ±2Q±, {Q+,Q−} = N , (166)

i.e., they have almost the structure ofu(1/1) superalgebra. Indeed, hereN is an
even nilpotent operator such thatN 2 = 0.

According to (153) and (163), a class of superalgebra eigenstates ofH0 can
be obtained by applyingn times (n = 0, 1, 2,. . .) the raising operatorA†0 on the
zero eigenvalue eigenstates ofA0. From (45), we deduce that these latter are given
by

|E0; j 〉 =
(

1− 1

4
β̂
‡
1 β̂1

)[
|0; j 〉 − β̂1√

2
|2; j 〉

]
, (167)

where j corresponds to the set{−,+}.
Then, asH0|E0; j 〉 = 0, the generated energy eigenstates are given by

|En; j 〉 ∝ (A‡0)n|E0; j 〉 =
(

(a†)n + β̂‡1
n−1∑
k=0

(a†)(n−1−k)a(a†)k

)
|E0; j 〉 (168)

and the corresponding energy eigenvalues areE j
n = n. An orthonormalized version

of these states is given by

|En; j 〉 =
(

1− 1

4
β̂
‡
1 β̂1(2n+ 1)

)
[
|n; j 〉 + β̂

‡
1

2

√
n(n− 1)|n− 2; j 〉 − β̂1

2

√
(n+ 1)(n+ 2)|n+ 2; j 〉

]
,

(169)

wheren ∈ N. From (169), it is easy to calculate the action ofA‡0 andA0 on the
|En; j 〉 eigenstates, we get

A‡0|En; j 〉 =
(

1− 1

2
β̂
‡
1 β̂1(n+ 1)

)√
n+ 1|En+1; j 〉 (170)

and

A0|En; j 〉 =
(

1− 1

2
β̂
‡
1 β̂1n

)√
n|En−1; j 〉. (171)

Thus, the orthonormalized energy eigenstates|En; j 〉 can be written in the standard
form

|En; j 〉 =
(

1+ 1

4
β̂
‡
1 β̂1n(n+ 1)

)
(A‡0)n

√
n!
|E0; j 〉. (172)
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This is a complete set of states. Indeed, using (169), we can demonstrate the
completeness property∑

j

∞∑
n=0

|En; j 〉〈En; j | = I ⊗ I =
∑

j

∞∑
n=0

|n; j 〉〈n; j |. (173)

On the other hand, we can express the|n; j 〉 states in the form

|n; j 〉 =
(

1− 1

4
β̂
‡
1 β̂1(2n+ 1)

)[
|En; j 〉 − j

√
(n+ 1)(n+ 2)|En+2; j 〉 β̂1

2

+ j
√

n(n− 1)|En−2; j 〉 β̂
‡
1

2

]
, (174)

then, from (172) and after some manipulations, we get

|0; j 〉 =
(

1− 1

4
β̂
‡
1 β̂1

)
exp

(
(A‡0)2

2
β̂1

)
|E0; j 〉. (175)

According to (45), the coherent states associated to a physical system characterized
by the hamiltonian (163) can be written as

|ϕ; j 〉 = exp

[
−β̂1

(a†)2

2
− ẑ1β̂1

(a†)3

3

]
D(ẑ0)D(ẑ1)

×
(

1− 1

4
β̂
‡
1 β̂1

)
exp

(
(A‡0)2

2
β̂1

)
|E0; j 〉Ĉ(ẑ, β̂1). (176)

5.2. Spin 1
2 Generalized Isospectral Oscillator System

In the case wherêβ1 = 0 andγ ‡0 γ0 = δ‡0δ0, the operatorA0 takes the form

A0 = a+ γ0b+ δ0b† (177)

and the commutator (160) writes

[A0,A‡0] = 1. (178)

A class of HamiltonianH0 satisfying (153) is given by

H0 = A‡0A0 = a†a+ γ ‡0 γ0+ γ0a†b+ γ †0 ab† + δ0a†b† + δ†0ab. (179)

We notice that this is a super-Hermitian Hamiltonian, without defined parity, which
is a linear Grassmann combination of generators of the osp(2/2)−D sh(2/2) Lie
superalgebra. Then, in this aspect, the corresponding HamiltonianH defined in
(156) complements the classes of Hamiltonians considered by Buzanoet al.(1989).
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By construction, the eigenstates ofA0 corresponding to the eigenvaluez= 0
are eigenstates ofH0 corresponding to the eigenvalueE0 = 0. Let us take these
states to be the normalized version of states (140 and 141), whenz0 = 0, i.e.,

|E0,−〉 = (
√

1+ (
√
γ0)−1((

√
γ0)−1)‡

√
δ0(
√
δ0)‡)−1

×D(
√
γ0δ0)[|0;−〉 − (

√
γ0)−1

√
δ0|0;+〉] (180)

and

|E0,+〉 = (
√

1+ (
√
δ0)−1((

√
δ0)−1)‡

√
γ0(
√
γ0)‡)−1

×D(
√
γ0δ0)[|0;+〉 − (

√
δ0)−1√γ0|0;−〉]. (181)

Thus, from (153) and (178), we deduce that a class of orthonormalized eigen-
states ofH0 corresponding to the eigenvalueE j

n = n is given by (n = 0, 1, 2,. . . ;
j = −,+)

|En, j 〉 = (A‡0)n

√
n!
|E0, j 〉. (182)

Moreover, a class of normalized coherent states for this generalized harmonic
system which are eigenstates ofA0 corresponding to the eigenvaluez= z0 is
easily constructed as (Alvarez-Moraga and Hussin, 2002)

|z0, j 〉 = exp(z0A‡0 − z‡0A0)|E0, j 〉. (183)

These coherent states are obtained from those of Eqs. (140 and 141) by acting with
the following superunitary transformation:

U(z0; γ0, δ0) = exp
[
z0
(
γ
‡
0 b† + δ‡0b

)− z‡0(γ0b+ δ0b†)
]
. (184)

6. CONCLUSIONS

In this paper we have generalized the AES (Brif, 1997) concept to the one
of SAES. We have demonstrated that SAES associated to the H–W Lie super-
algebra contain the sets of standard coherent and supercoherent states associ-
ated to the usual and supersymmetric harmonic oscillator systems, respectively
(Alvarez-Moraga and Hussin, 2002; Aragone and Zypman, 1986; Fatygaet al.,
1991; Perelomov, 1986). Also, these SAES contain both the standard squeezed
and supersqueezed states (Nieto, 1992; Orszag and Salamo, 1988) and the su-
persqueezed states associated to the spin− 1

2 representation of the AES of the
h(2)⊕ su(2) algebra (Alvarez-Moraga and Hussin, 2002). Let us mention that
the introduction of Grassmann coefficients in the linear combination of the su-
peralgebra generators helps us to understand the role played by thec-numbers
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(even Grassmann numbers) andd-numbers (odd Grassmann numbers) interac-
tion coefficients, in the mentioned literature. Moreover, from the idea of giving
to SAES the interpretation of an operator associated to a physical system, we
have constructed some classes of super-Hermitian andη-pseudo-super-Hermitian
Hamiltonians (DeWitt, 1984; Mostafazadeh, 2002), isospectral to the standard har-
monic oscillator hamiltonian. We have found their physical eigenstates and their
associated supercoherent states. In this respect, we see that the SAES concept
constitutes an alternative and unified approach for the construction of generalized
coherent and supercoherent and also squeezed and supersqueezed states for a given
quantum system.
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APPENDIX A

Notations and Conventions

In this Appendix we want to fix the notations and conventions used in this
work. They concern principally the concepts of Grassmann algebra, Lie superal-
gebra and their representations, super-Hermitian and superunitary operators, super
Lie algebra, and linear Lie supergroup.

Let us remind that a complexGrassmann algebra, CBL , is a linear vector
space over the field of complex numbers, associative andZ2 graded. It may thus be
decomposed intoCBL0 + CBL1, where the even spaceCBL0 is generated by the set
of 2L−1 linearly independent generatorsEµ of even level and the odd spaceCBL1 is
generated by the set of 2L−1 linearly independent generatorsEµ of odd level. Here,
the indexµ represents either the empty setφ or the set (j1, j2, . . . , jN(µ)) of N(µ)
integer numbers such that 1≤ j1 < j 2 · · · < j N(µ) ≤ L. N(µ) is the level of the
generatorEµ. The identity of the algebra isEφ = 1 andEµ = E j 1E j 2 · · · E j N (µ) is
the ordered product ofN(µ) odd generators of level 1 taken among the set of basic
generators{E j , j = 1, 2,. . . , L}. The product of these generators is associative
and antisymmetric. Moreover, any nonzero product of the typeE j 1E j 2 . . . E jr of r
generators is linearly independent of the products containing less thanr generators
and we haveEφE j = E jEφ = E j , ∀ j = 1, 2,. . . , L. The graduation is introduced
by defining the degree ofEµ, i.e.,

degEµ = (−1)N(µ), (185)

with N(φ) = 0.
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Any elementB ∈ CBL can be written either in the form

B =
∑
µ

BµEµ, Bµ ∈ C, (186)

or as the sum of its even partB0 and its odd partB1, i.e., B = B0+ B1 with

B0 =
∑

evenN(µ)

BµEµ, B1 =
∑

oddN(µ)

BµEµ. (187)

We also deduce the graded operations for the Grassmman algebra, i.e., for all
B0, Z0 ∈ CBL0, B1, Z1 ∈ CBL1, we have

B0Z0 = Z0B0 ∈ CBL0, B0Z1 = Z1B0 ∈ CBL1, B1Z1 = −Z1B1 ∈ CBL0. (188)

In particular, for allB = B0+ B1 ∈ CBL andZ1 ∈ CBL1,

BZ1 = Z1B∗, Z1B = B∗Z1, (189)

where

B∗ = B0− B1, (190)

is theconjugateof B. The product of any two elements of the algebra,B andB′,
corresponds to

BB′ =
∑
µ

∑
µ′

BµB′µ′ (EµEµ′ ), (191)

with

EµEµ′ = ±Eν , where N(ν) = N(µ)+ N(µ′), (192)

when neither of the indices in the sets represented byµ andµ′ is repeated, and
EµEµ′ = 0, when at least one of the index in the set represented byµ andµ′ is
repeated. The sign± in (192) is determined by using the antisymmetric property
of the basic generatorsE j when reordering the their product.

The identity component of the elementB, usually called the body, is denoted
by ε(B) = Bφ ∈ C, whereas the nilpotent quantitys(B) = B− BφEφ defines the
soul of B.

With respect to thecomplex conjugateof the elementB ∈ CBL , we follow
the conventions of Cornwell (1989) and thus write

B̄ =
∑
µ

B̄µEµ, (193)

i.e., the basis elementsEµ are considered as the real Grassmann numbers. Also,
theadjointof B is defined by the relation

B‡ =
∑
µ

B̄µE‡µ, (194)
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where

E‡µ =
{
Eµ, if N(µ) is even

−iEµ, if N(µ) is odd.
(195)

This adjoint operation has the same properties than the ones of the usual adjoint
operation for complex matrices.

The inverse of a Grassmann numberB, denoted by (B)−1, is defined as

B(B)−1 = (B)−1B = εφ = 1. (196)

It is important to mention thatB is invertible if and only ifBφ 6= 0.
The integration with respect to an odd Grassmann variable must be considered

in the Berezin sense (Berezin, 1987), i.e., ifη ∈ CBL1, then∫
dη = 0,

∫
η dη = 1, (197)

where the integration is taken over all the domain of definition ofη.
Let us now recall some useful definitions and properties of Lie superalgebras,

supergroups, and associated representations.

Definition A1. A (m/n) dimensional complex Lie superalgebraLs, is a complex
vector space,Z2 graded with respect to a generalized Lie product, formed from
the direct sum of two subspaces, the even subspace of dimensionm≥ 0, which we
denote byL0, and the odd subspace of dimensionn ≥ 0 (m+ n ≥ 1), which we
denote byL1, such that, for alla, b ∈ Ls, there exists a generalized Lie product
(supercommutator) [a, b] with the following properties:

1) [a, b] ∈ Ls, for all a, b ∈ Ls;
2) for all a, b, c ∈ Ls and any complex (real) numbersα andβ,

[αa+ βb, c] = α[a, c] + β[b, c]; (198)

3) if a andb are homogeneous elements ofLs then [a, b] is also a homoge-
neous element ofLs whose degree is (dega+ degb) mod 2; that is, [a, b]
is odd if eithera or b is odd, but [a, b] is even ifa andb are both even or
if a andb are both odd;

4) for any homogeneous elementsa andb of Ls

[b, a] = −(−1)(dega)(debb)[a, b]; and (199)

5) for any three homogeneous elementsa, b, andc of Ls, we have the gen-
eralized Jacobi identity:

[a, [b, c]](−1)(dega)(degc) + [b, [c, a]](−1)(degb)(dega)

+ [a, [b, c]](−1)(degc)(degb) = 0. (200)
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We notice that the even subspace,L0, is an ordinary complex Lie algebra
whereas the odd subspace,L1, is a carrier space for a representation of a Lie
algebraL0.

Just as an ordinary Lie algebra can, in general, be represented by a set of
complex matrices, a Lie superalgebra can also be represented, in general, by a set
of complex matrices. Nevertheless, the graded character of a superalgebra implies
certain special conditions for the structure of these matrices.

Definition A2. Suppose that for everya ∈ Ls, there exists a matrix0(a) from the
set of complex matrices partitioned in the form (d0/d1)× (d0/d1), that we denote
by M(d0/d1;C), such that

1) for all a, b ∈ Ls andα, β of the field ofLs,

0(αa+ βb) = α0(a)+ β0(b); (201)

2) for all a, b ∈ Ls,

0([a, b]) = [0(a), 0(b)]; (202)

3) if a ∈ L0, the even subspace ofLs, then0(a) a la forme

0(a) =
(
000(a) 0

0 011(a)

)
, (203)

where000(a) and011(a) ared0× d0 andd1× d1 dimensional submatrices,
respectively; and ifa ∈ L1, the odd subspace ofLs, then0(a) has the form

0(a) =
(

0 001(a)

010(a) 0

)
, (204)

where001(a) and010(a) ared0× d1 andd1× d0 dimensional submatri-
ces, respectively. Then these matrices0(a) are said to form a (d0/d1)-
dimensionalgraded representationof Ls.

LetLs be a (m/n) dimensional complex Lie superalgebra with even basis el-
ementsa1, a2, . . . , am and odd basis elementsam+1, am+2, . . . , am+n, represented
by the set of matrices0(ak), k = 1, 2,. . . , m+ n. To each matrix8(ak), we can
associate a linear operator8(ak) acting on the carrier spaceW of the represen-
tation. This space is a (d0+ d1) inner product vector space expanded by a basis
formed by the set of even vectors{|w j 〉}d0

j=0 and the set of odd vectors{|w j 〉}d0+d1
j=d0+1

and this action is defined by the relation

8(ak)|w j 〉 =
d0+d1∑
i=1

(0(ak))i j |wi 〉. (205)
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ThenLs can also be represented by set of even operators8(ak)(k = 1, 2,. . . , m)
and the set of odd opertors8(ak)(k = m+ 1, m+ 2, . . . , m+ n), verifying the
same supercommutation relations as the basis elementsak(k = 1, 2,. . . , m+ n).

Let χ to be a polynomial function of theLs superalgebra generators, with
complex Grassmannian coefficients. We say thatχ is a super-Hermitian(anti-
super-Hermitian) operator ifχ = χ‡(χ = −χ‡). In particular, ifχ is a complex
Grassmannian linear combination of theLs superalgebra generators, i.e.,

χ =
m∑

j=1

C j8(aj )+
n∑

k=1

Dk8(am+k), (206)

whereC j ∈ CBL ( j = 1, 2. . . , m) andDk ∈ CBL (k = 1, 2. . . , n) then

χ‡ =
m∑

j=1

(8(aj ))
†(C j )‡ +

n∑
k=1

(8(am+k))†(Dk)‡, (207)

where the† symbol is reserved for the usual adjoint operation. We say that a general
U operator issuperunitaryif UU‡ = U‡U = I , whereI , is the identity operator. In
particular, ifχ is an anti-super-Hermitian operator, thenU = eχ is a superunitary
operator.

If for j = 1, 2,. . . , m and every elementEµ of CBL , we define the even
operators

M j
µ = Eµ8(aj ) (208)

and fork = 1, 2,. . . , n and every odd elementEν of CBL , we define the even
operators

Nk
ν = Eν8(am+k), (209)

then the set of (m+ n)2L−1 operators defined by Eqs. (208) and (209) form a
basis of a (m+ n)2L−1 dimensional real Lie algebra, whose Lie product is given
by the usual commutator induced by the generalized Lie product ofLs. This real
Lie algebra is denoted byLs(CBL ) and is called asuper Lie algebra. A general
elementM of this super Lie algebra writes

M =
m∑

j=1

∑
evenµ

X j
µM j

µ +
n∑

k=1

∑
oddν

2k
νNk

ν , (210)

whereX j
µ and2k

ν are real parameters. Also we can write this element in the form

M =
m∑

j=1

X j M j +
n∑

k=1

2k Nk, (211)
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whereX j =∑evenµ X j
µEµ ∈ RBL0,2

k =∑oddν 2
k
νEν ∈ RBL1 and

M j = Eφ8(aj ), Nk = Eφ8(am+k). (212)

Let us end this Appendix by giving a method of construction of a linear Lie
supergroup(Rogers, 1981). IfLs(CBL ) is a real super Lie algebra whose basis
elements are defined by (208) and (209), then every linear Lie group whose associ-
ated real Lie super algebra is given byLs(CBL ) is a (m/n) linear Lie supergroup,
which we denote byGs(CBL ). The elements near the identity can be parametrized
by

G(X; Θ) = exp{M} = exp

{
m∑

j=1

X j M j +
n∑

k=1

2k Nk

}
. (213)

APPENDIX B

Solving [a + βa† + γb + δb†]|ψ〉 = z|ψ〉
In this Appendix we will solve the eigenvalue Eq. (95). We will do it in two

steps. Firstly, we will solve the eigenvalue Eq. (118) and express its solutions in
terms of a generalized supersqueeze operator acting on the supercoherent states
ez|0;±〉. This supersqueeze operator is used to reduce the eigenvalue Eq. (95) to a
simpler one (see section 4.3) that is to the eigenvalue equation (143). Finally, we
will solve the eigenvalue Eq. (143).

SAES of a+ γb+ δb†
Let us solve the eigenvalue Eq. (118). The solution is assumed on the type

(97) and by inserting it into (118), then using the usual properties of the operators
and the states{|n;±〉}, we get the system (n = 0, 1, 2. . .)

√
n+ 1Cn+1+ γ D∗n = zCn, (214)
√

n+ 1Dn+1+ δC∗n = zDn. (215)

Let us notice the symmetric form of this system. Proceeding by iteration, we can
express theCn andDn coefficients in terms of the arbitrary Grassmann constants
C0 andD0, i.e. (n = 1, 2,. . .),

Cn = 1√
n!

{
znC0−

(n−1)∑
k1=0

z(n−1−k1)γ (z∗)k1 D∗0

+
(n−2)∑
k1=0

(n−2−k1)∑
k2=0

z(n−2−k1−k2)γ (z∗)k2δ∗zk1C0
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−
(n−3)∑
k1=0

(n−3−k1)∑
k2=0

(n−3−k1−k2)∑
k3=0

z(n−3−k1−k2−k3)γ (z∗)k3δ∗zk2γ (z∗)k1 D∗0 + · · ·

+ (−1)n(γ δ∗)[
n
2 ]γ (n−2[ n

2 ])Fn−2[ n
2 ]

}
, (216)

and

Dn = 1√
n!

{
zn D0−

(n−1)∑
k1=0

z(n−1−k1)δ(z∗)k1C∗0

+
(n−2)∑
k1=0

(n−2−k1)∑
k2=0

z(n−2−k1−k2)δ(z∗)k2γ ∗zk1 D0

−
(n−3)∑
k1=0

(n−3−k1)∑
k2=0

(n−3−k1−k2)∑
k3=0

z(n−3−k1−k2−k3)δ(z∗)k3γ ∗zk2γ (z∗)k1C∗0 + · · ·

+ (−1)n(δγ ∗)[
n
2 ]δ(n−2[ n

2 ])Gn−2[ n
2 ]

}
, (217)

where [n2] represents the entire part ofn
2 andF0 = C0, F1 = D∗0, G0 = D0, G1 =

C∗0. Here we need to calculate the multiple summation. By expressingz as
a sum of their even and odd parts,z= z0+ z1, we get, for example,
(` = 1, 2,. . . , n)

(n−`)∑
k1=0

(n−`−k1)∑
k2=0

· · ·
(n−`−k1−k2−···−k`−1)∑

k`=0

z(n−`−k1−k2−···−k )̀γ (z∗)k` δ∗zk`−1γ (z∗)k`−2δ∗ · · ·

= n!

(n− `)!`!
{ ` factors︷ ︸︸ ︷

(γ δ∗γ δ∗ · · ·) z0

+ (n− `)
`+ 1

∑̀
j=0

(−1) j+`
(`− j ) factors︷ ︸︸ ︷

(γ δ∗γ δ∗ · · ·) z1

j factors︷ ︸︸ ︷
(· · · γ δ∗γ · · ·)

}
z(n−`−1)

0

= Oz0(`, γ , δ∗, z1)zn, (218)

whereOz0 is the differential operator
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Oz0(`, γ , δ∗, z1) = 1

`!

{ ` factors︷ ︸︸ ︷
(γ δ∗γ δ∗ · · ·)

(
∂`

∂z`0
− z1

∂`+1

∂z`+1
0

)

+ 1

`+ 1

∑̀
j=0

(−1) j+`
(`− j ) factors︷ ︸︸ ︷

(γ δ∗γ δ∗ · · ·) z1

j factors︷ ︸︸ ︷
(· · · γ δ∗γ · · ·) ∂

`+1

∂z`+1
0

}
,

(219)

which is also defined for̀ = 0, in factOz0(0, γ , δ∗, z1) = 1. By inserting (218)
into (216) and (217), we get the compact form ofCn andDn coefficients, i.e.,

Cn =
n∑
`=0

(−1)`Oz0(`, γ , δ∗, z1)
zn

√
n!

F`−2[ `2 ] (220)

and

Dn =
n∑
`=0

(−1)`Oz0(`, δ, γ
∗, z1)

zn

√
n!

G`−2[ `2 ] . (221)

By inserting (220) and (221) into (97) and then separating the terms to multi-
ply arbitrary constantsC0 and D0, we obtain two independent solutions for the
eigenvalue Eq. (118):

|ψ ;−〉 =
[ ∞∑

n=0

2[n/2]∑
` even

Oz0(`, γ , δ∗, z1)
zn

√
n!
|n;−〉

−
∞∑

n=1

2[(n+1)/2]−1∑
` odd

Oz0(`, δ, γ
∗, z1)

zn

√
n!
|n;+〉

]
C0 (222)

and

|ψ ;+〉 =
[ ∞∑

n=0

2[n/2]∑
` even

Oz0(`, δ, γ
∗, z1)

zn

√
n!
|n;+〉

−
∞∑

n=1

2[(n+1)/2]−1∑
` odd

Oz0(`, γ , δ∗, z1)
zn

√
n!
|n;−〉

]
D∗0. (223)

AsOz0(`, γ , δ∗, z1)zn = 0, when` > n, we can spread out the sum on` index up
to infinity and then place it out of the sum corresponding to then index. In this
way, we can add up on then index and express (222) and (223) on the form

|ψ ;−〉 =
[ ∞∑
` even

Oz0(`, γ , δ∗, z1)eza† |0;−〉 −
∞∑
` odd

Oz0(`, δ, γ
∗, z1)eza† |0;+〉

]
C0

(224)
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and

|ψ ;+〉 =
[ ∞∑
` even

Oz0(`, δ, γ
∗, z1)eza† |0;+〉 −

∞∑
` odd

Oz0(`, γ , δ∗, z1)eza† |0;−〉
]

D∗0,

(225)
respectively. Finally, using the fact that∂

`

∂z`0
eza† = (a†)`eza† , we get the generalized

supersqueezed states (119) and (120).

SAES OFa + β̂1a† + γ0b + δ0b†

Let us solve the eigenvalue Eq. (143) by taking|ϕ〉 again on the form (97).
By inserting it into (143), and proceeding as in the above sections, we get the
algebraic system (n = 1, 2. . .)

√
n+ 1Cn+1+ γ0D∗n +

√
n ˆ̂β1Cn−1 = zCn, (226)

√
n+ 1Dn+1+ δ0C∗n +

√
nβ̂1Dn−1 = zDn, (227)

together with

C1 = zC0− γ0D∗0, (228)

D1 = zD0− δ0C∗0 . (229)

Again, we notice the symmetric form of this algebraic system. Proceeding by
iteration, we can express theCn and Dn coefficients in terms of the arbitrary
Grassmann constantsC0 andD0, we get (n = 2, 3,. . .)

Cn = C̃n − 1√
n!

 2[ n
2 ]∑

eveǹ =2

(n−`)∑
k1=0

(n−`−r1)∑
k2=0

(n−`−r2)∑
k3=0

· · ·
(n−`−r`−2)∑

k`−1=0

`
2∑

j=1

(k2 j−1+ 1)z(n−`−r`−1)(z∗)k`−1zk`−2 · · · (z∗)k1(
√
γ0δ0)`−2β̂1

C0

+ 1√
n!

 2[ n+1
2 ]∑

odd`=3

(n−`)∑
k1=0

(n−`−r1)∑
k2=0

(n−`−r2)∑
k3=0

· · ·
(n−`−r`−2)∑

k`−1=0

[ `2 ]∑
j=1

(k2 j + 1)z(n−`−r`−1)(z∗)k`−1zk`−2 · · · zk1(
√
γ0δ0)`−3γ0β̂1

 D∗0, (230)



P1: KEF,IZO,JQX,GAD

International Journal of Theoretical Physics [ijtp] pp1166-ijtp-484393 April 28, 2004 4:51 Style file version May 30th, 2002

sh(2/2) SAES and Generalized Supercoherent and Supersqueezed States 215

Dn = D̃n − 1√
n!

 2[ n
2 ]∑

eveǹ =2

(n−`)∑
k1=0

(n−`−r1)∑
k2=0

(n−`−r2)∑
k3=0

· · ·
(n−`−r`−2)∑

k`−1=0

`
2∑

j=1

(k2 j−1+ 1)z(n−`−r`−1)(z∗)k`−1zk`−2 · · · (z∗)k1(
√
γ0δ0)`−2β̂1

 D0

+ 1√
n!

 2[ n+1
2 ]∑

odd`=3

(n−`)∑
k1=0

(n−`−r1)∑
k2=0

(n−`−r2)∑
k3=0

· · ·
(n−`−r`−2)∑

k`−1=0

[ `2 ]∑
j=1

(k2 j + 1)z(n−`−r`−1)(z∗)k`−1zk`−2 · · · zk1(
√
γ0δ0)`−3γ0β̂1

C∗0, (231)

where

r` =
∑̀
j=1

kj (232)

and, in accordance with Eqs. (220) and (221),

C̃n =
n∑
`=0

(−1)`Oz0(`, γ0, δ0, z1)
zn

√
n!

F`−2[ `2 ] (233)

and

D̃n =
n∑
`=0

(−1)`Oz0(`, δ0, γ0, z1)
zn

√
n!

G`−2[ `2 ] (234)

Using the fact that for̀ even, we have

z(n−`−r`−1)(z∗)k`−1zk`−2 · · · (z∗)k1 = z(n−`)
0 + [(n− `)

− 2(k1+ k3+ · · · k`−1)]z(n−`−1)
0 z1, (235)

for ` odd, we have

z(n−`−r`−1)(z∗)k`−1zk`−2 · · · zk1 = z(n−`)
0 + [(n− `)− 2(k2+ k4

+ · · · k`−1)]z(n−`−1)
0 z1, (236)

and that

(n−`)∑
k1=0

(n−`−r1)∑
k2=0

(n−`−r2)∑
k2=0

· · ·
(n−`−r`−2)∑

k`−1=0

3`(k) (237)
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is equal to

(n− 1)!

(n− `)!(`− 1)!
, if 3`(k) = 1 and ` ≥ 2,

(n− 1)!

2(n− `− 1)!(`− 1)!
, if 3`(k) = (k1+ k3+ · · · + k`−1)

and ` = 2, 4,. . . ,

`(n− 1)!

2(n− `− 1)!(`− 1)!

[
(n− `) if 3`(k) = (k1+ k3+ · · · + k`−1)2

+ `
2

(n− `+ 1)

]
, and ` = 2, 4,. . . ,

(`− 1)(n− 1)!

2(n− `− 1)!`!
, if 3`(k) = (k2+ k4+ · · · + k`−1)

and ` = 3, 5,. . . ,

(`− 1)(n− `+ 1)(n− 1)!

4(n− `− 1)!`!
, if 3`(k) = (k2+ k4+ · · · + k`−1)2

and ` = 3, 5,. . . ,

(238)

and after some manipulations, we can reduce (230) and (231) to

Cn = C̃n − β̂1

2
√

n!

×
 2[ n

2 ]∑
eveǹ =2

n!

(n− `)!(`− 1)!

(
z(n−`)

0 + (n− `)
(`+ 1)

z(n−`−1)
0 z1

)
(
√
γ0δ0)`−2

C0

+ β̂1

2
√

n!

2[ n+1
2 ]−1∑

odd`=3

(`− 1)n!

(n− `)!`! z(n−`)
0

(√
γ0δ0

)`−3
γ0

 D∗0 (239)

and

Dn = D̃n − β̂1

2
√

n!

×
 2[ n

2 ]∑
eveǹ =2

n!

(n− `)!(`− 1)!

(
z(n−`)

0 + (n− `)
(`+ 1)

z(n−`−1)
0 z1

)
(
√
γ0δ0)`−2

 D0



P1: KEF,IZO,JQX,GAD

International Journal of Theoretical Physics [ijtp] pp1166-ijtp-484393 April 28, 2004 4:51 Style file version May 30th, 2002

sh(2/2) SAES and Generalized Supercoherent and Supersqueezed States 217

+ β̂1

2
√

n!

2[ n+1
2 ]−1∑

odd`=3

(`− 1)n!

(n− `)!`! z(n−`)
0 (

√
γ0δ0)`−3δ0

C∗0, (240)

respectively. Then, using the fact that

n!

(n− `)! zn−l
0 =

(
∂`

∂z`0
− z1

∂`+1

∂z`+1
0

)
zn,

n!

(n− `− 1)!
zn−`−l

0 z1 = z1
∂`+1

∂z`+1
0

zn,

(241)
we can write (239) and (240) in the form

Cn = C̃n − β̂1

2
√

n!

×
 2[ n

2 ]∑
eveǹ =2

1

(`− 1)!

((
∂`

∂z`0
− z1

∂`+1

∂z`+1
0

)
+ z1

(`+ 1)

∂`+1

∂z`+1
0

)
zn(
√
γ0δ0)`−2

C0

+ β̂1

2
√

n!

2[ n+1
2 ]−1∑

odd`=3

(`− 1)

`!

(
∂`

∂z`0
− z1

∂`+1

∂z`+1
0

)
(
√
γ0δ0)`−3γ0

 D∗0 (242)

Dn = D̃n − β̂1

2
√

n!

×
 2[ n

2 ]∑
eveǹ =2

1

(`− 1)!

((
∂`

∂z`0
− z1

∂`+1

∂z`+1
0

)
+ z1

(`+ 1)

∂`+1

∂z`+1
0

)
zn(
√
γ0δ0)`−2

 D0

+ β̂1

2
√

n!

2[ n+1
2 ]−1∑

odd`=3

(`− 1)

`!

(
∂`

∂z`0
− z1

∂`+1

∂z`+1
0

)
(
√
γ0δ0)`−3δ0

C∗0, (243)

respectively. We notice that, when the inverse of the productγ0δ0 exist, or even if
it does not exist, we can write formally these last equations in the compact form

Cn = C̃n − β̂1(γ0δ0)−1

2

 2[ n
2 ]∑

eveǹ =2

`Oz0(`, γ0, δ0, z1)
zn

√
n!

C0

+ β̂1(γ0δ0)−1

2

2[ n+1
2 ]−1∑

odd`=3

(`− 1)Oz0(`, γ0, δ0, z1)
zn

√
n!

 D∗0 (244)
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and

Dn = D̃n − β̂1(γ0δ0)−1

2

 2[ n
2 ]∑

eveǹ =2

`Oz0(`, δ0, γ0, z1)
zn

√
n!

 D0

+ β̂1(γ0δ0)−1

2

2[ n+1
2 ]−1∑

odd`=3

(`− 1)Oz0(`, δ0, γ0, z1)
zn

√
n!

C∗0 . (245)

Now, by inserting (244) and (245) into (97) and proceeding exactly as in Appendix
B (section SAES ofa+ γb+ δb†), we get the two independent solutions (145)
and (146).
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